
Coverage-Driven Test Code Generation
for Concurrent Classes

Valerio Terragni and Shing-Chi Cheung
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
Hong Kong

{vterragni, scc}@cse.ust.hk

ABSTRACT

Previous techniques on concurrency testing have mainly fo-
cused on exploring the interleaving space of manually written
test code to expose faulty interleavings of shared memory
accesses. These techniques assume the availability of failure-
inducing tests. In this paper, we present AutoConTest,
a coverage-driven approach to generate effective concurrent
test code that achieve high interleaving coverage. AutoCon-

Test consists of three components. First, it computes the
coverage requirements dynamically and iteratively during
sequential test code generation, using a coverage metric that
captures the execution context of shared memory accesses.
Second, it smartly selects these sequential codes based on
the computed result and assembles them for concurrent tests,
achieving increased context-sensitive interleaving coverage.
Third, it explores the newly covered interleavings. We have
implemented AutoConTest as an automated tool and eval-
uated it using 6 real-world concurrent Java subjects. The
results show that AutoConTest is able to generate effective
concurrent tests that achieve high interleaving coverage and
expose concurrency faults quickly. AutoConTest took less
than 65 seconds (including program analysis, test generation
and execution) to expose the faults in the program subjects.

CCS Concepts

•Software and its engineering → Software testing
and debugging; Synchronization; Dynamic analysis;

Keywords

Automated test generation; Interleaving coverage criteria

1. INTRODUCTION
Rapid advances in multi-core chip technology have lead

to pervasive adoption of concurrency programming, where
software is jointly executed by multiple threads in a shared
memory space [39]. Due to the inherent complexity of thread
synchronization, concurrent programs are error-prone.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive version was published in:

ICSE ’16, May 14-22, 2016, Austin, TX, USA

c© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884876

While writing failure-inducing tests is cumbersome and
labour-intensive, their availability is essential to expose soft-
ware faults. Therefore, automated generation of test code for
sequential programs is an active research topic [14, 21, 22,
40, 59, 60]. Adapting these techniques for concurrency test-
ing [38, 43, 56] presents both opportunities and challenges.
A major obstacle to the adoption of automated test code

generation for sequential programs is the automatic deriva-
tion of effective test oracles that can accurately differentiate
between failing and successful tests [13, 19, 42]. Fortunately,
this obstacle is much alleviated for concurrency testing. Re-
cent characteristic studies on real faults show that 56-70%
of the examined concurrency faults lead to visible oracle
violations, such as crashes or hangs [29, 33, 57]. Besides,
the use of effective concurrency correctness criteria (e.g.,
serializability [61]) can help detect those concurrency faults
that do not manifest visible oracle violations [68].

Unlike their sequential counterpart, the challenges of con-
currency testing lie in the non-determinism of thread schedul-
ing. Even for a test that can trigger a concurrency fault, we
often need to execute the test many times in order to expose
a faulty (i.e., oracle-violating) thread interleaving. Although
there are techniques proposed to facilitate the interleaving
exploration [17, 37, 41, 64], we can only afford exploring the
interleaving spaces of a small number of tests in practice due
to the enormity of interleaving spaces. This imposes a critical
constraint of using random test generation techniques [38,
43] because effective concurrency fault detection typically
requires a lot of randomly generated tests [38, 43]. For in-
stance, an existing random technique took on average 8.2
hours to generate and run millions of tests before exposing a
concurrency fault [7], where 99.5% of the time was spent on
interleaving space exploration [43].

Existing works on concurrent testing [25, 41, 64, 67] mostly
study how to guide the interleaving space exploration of a
given concurrent test with respect to an interleaving coverage
criterion (e.g., [32, 58, 66]). However, the generation of
concurrent test code for an interleaving coverage criterion
has rarely been studied [56]. Indeed, it is an important
problem because test effectiveness can be much increased if
we are able to generate concurrent test code that effectively
triggers the interleavings of shared memory accesses relevant
to a given interleaving coverage criterion. It saves redundant
effort in exploring a large amount of interleavings that are
irrelevant to concurrency fault detection or ineffective for
enhancing interleaving coverage.
Automating test generation for interleaving coverage im-

poses two major challenges. First, it needs to estimate the

http://dx.doi.org/10.1145/2884781.2884876

coverage requirements (i.e., interleavings) with respect to
all possible concurrent tests. However, calculating the ex-
ecutable domain of interleaving coverage criteria precisely
requires context-sensitive and synchronization-sensitive anal-
ysis that is machine undecidable for concurrent programs [44].
Second, it needs to estimate the set of interleavings that
can be covered by a generated concurrent test in order to
avoid generating tests that explore interleavings redundantly.
However, the cost of precise estimation amounts to that of
actually exploring the test’s interleaving space due to the
need for thread-sensitive analysis, which is intractable [54].
Previous work addressed the challenges by approximating the
interleaving coverage using a context-insensitive analysis [56].
However, the approximation yields to both infeasible and
missing requirements.
In this paper, we present a technique called AUTOmated

CONcurrency TESTing (AutoConTest) that automatically
generates and runs a suite of concurrent tests for a given class
under test. The concurrent tests are obtained by first gen-
erating single-threaded sequences of method calls and then
assembling them into concurrent (i.e., multi-threaded) tests.
Our intuition is that context-sensitive information can be
computed efficiently and precisely during dynamic sequential
test generation. This observation relieves us from comput-
ing the entire coverage requirements before test generation.
Instead, we can generate concurrent tests iteratively so that
each test increases context-sensitive interleaving coverage
based on the coverage data that are collected during the gen-
eration of the single-threaded sequences of method calls. In
summary, this paper makes the following four contributions:
•We propose a coverage metric (Section 4.1) that captures

context-sensitive information using single-threaded execution
without requiring thread-sensitive analysis.
•We present a greedy algorithm (Section 4.2) to iteratively

explore the search space of possible method call sequences
and identify the optimal sequence that achieves the highest
coverage with respect to our coverage metric in each iteration.
• We present a thread scheduler algorithm (Section 4.4)

to increase the context-sensitive interleaving coverage.
• We implemented a prototype tool of our approach and

evaluated it on 6 real-world Java subjects (Section 5). The
evaluation results show that AutoConTest detected all
concurrency faults with an average time of 38 seconds.

2. PROBLEM FORMULATION
This section formulates the problem of generating concur-

rent tests guided by an interleaving coverage criterion. It
also introduces the background and terminology of this work.

Preliminaries. Consider a concurrent program P, its
multi-threaded execution under a test (input) t, denoted by
P(t), is modelled as a sequence of shared memory accesses.
Each execution of P(t) follows some non-deterministic thread
schedule that determines the order of memory accesses. In
each execution of P(t), the order of shared memory accesses
within each thread is fixed while their global order across
multiple threads can vary. Let Σ denote the set of all shared
memory accesses triggered by P(t). An interleaving of P(t)
is a total order relation on a set in Σ [32] (i.e., an ordered
sequence of shared memory accesses). Whether P(t) can
exhibit a concurrency failure wholly depends on the possible
interleavings it prescribes. The concurrency testing of P(t)
requires exploring the possible interleavings that jointly form
the interleaving space of P(t).

2.1 Object-Oriented Concurrent Test
In this work, P is an object-oriented program composed of

a set of classes, each defining a set of methods and fields that
can be, respectively, executed and accessed concurrently by
multiple threads. The test inputs are unit-level concurrent
tests that validate the correctness of a given class-under-
test (CUT) by concurrently invoking a shared CUT object’s
public methods using multiple threads [38, 43, 56].
A concurrent test t = α • (β || γ) consists of three call

sequences, namely α, β and γ. Each of them is a sequence
δ = 〈c1, ..., cn〉 of method calls to be executed by one thread.
Each method call ci consists of a method signature and input
parameters, which can be primitive values (e.g., integers or
booleans) or object references. We treat the object receiver
of an instance method call as the call’s first parameter.

The sequences β and γ are to be executed concurrently by
two different threads. Examples of β and γ sequences can
be found in Figure 2. Like existing works [38, 43, 56], we
adopt a minimum configuration of two concurrent threads
per test. This is because previous studies show that 96% of
the concurrency bugs examined are guaranteed to manifest if
a certain partial order between two threads is enforced [33].

To allow P(t) trigger shared memory accesses, we confine
the method call parameters of type CUT (including the ob-
ject receiver) in β and γ to a single Shared Object Under Test
(SOUT) of type CUT so that the method calls made by the
two sequences likely access SOUT’s fields and trigger shared
memory accesses. The role of α is to initialize SOUT before
executing β and γ concurrently. Note that the call sequences
can create and mutate other objects, as for example, those
referenced by a method parameter of type different from
CUT. These objects will not be shared across threads.

2.2 Coverage-Driven Test Code Generation
Various interleaving coverage criteria have been pro-

posed to help select representative interleavings from the
interleaving space induced by a test (e.g., [32, 58, 66]). An
interleaving coverage criterion prescribes a set of properties
that an interleaving has to satisfy to be considered a test
coverage requirement. The properties are mostly derived
based on specific fault models or bug characteristics [34].
Examples of interleaving-based requirements include those
interleavings that constitute a data race [52], cover a specific
location pair [25, 58] or match a problematic access pattern,
which violates a certain form of serializability [34, 61].

Our approach deals with the problem of coverage-driven
test code generation, that is to iteratively generate a
sequence of concurrent tests 〈t1, t2, . . . , tN 〉 such that the
interleaving space of each P(ti) contains those interleavings
that 1) match predefined coverage requirements and 2) cannot
be induced by any of concurrent tests generated before ti.

We next formally present the problem definition. Let T SP
denote the union of the interleavings spaces of all possible con-
current tests that can be performed on P. LetRQ denote the
subset of T SP containing only those interleavings that are
requirements of a given interleaving coverage criterion. Let
cov(t) denote the set of requirements covered by a concurrent
test t, i.e., cov(t) = RQ ∩ {the interleaving space of P(t)}.
For each test t, we denote cost(t)(= costgen(t) + costexp(t))
as the cumulative cost in time to generate t and explore the
interleaving space of P(t) to select and test the coverage
requirements (i.e., interleavings).

public class CUT{

int x= 0, y= 0, z =0;

synchronized void m1(int x){

this.x = x;

}

synchronized void m2(int y){

this.y = y;

}

void m3(int v1){

if(z ==0){

synchronized (this){

m4(v1); }

} else

m4(v1*-1); //BUG1 }

l2: unlock
l1: lock

a2: W(y)

a1: W(x)

private void m4(int v1){

x = x + v1;

}

void m5(){

for(int i = 0; i<= y; i++)

z = i; //BUG2

}

void m6(B b){

CUT o = b.m();

o.m1(-1);

}

synchronized void m7(){

y = y + 1;

} }

a4: R(x)

a6: R(y)

a9: W(y)

a8: R(y)

a5: W(x)

a7: W(z)

a3: R(z)

Figure 1: Source code of the motivating example

Problem Definition: Given an interleaving coverage
criterion, CUT and cost budget B, generate a concurrent test
suite T = 〈t1, t2, ..., tN 〉 with the following objective:

maximize
∣

∣

N
⋃

i=1

cov(ti)
∣

∣ subject to:

N
∑

i=1

cost(ti) ≤ B, {cov(ti)\
i−1
⋃

j=1

cov(tj)} 6= ∅1 ∀i ∈ [1 . . . N]

Our research problem is to generate tests that collectively
achieve the highest coverage within a given time budget.

3. MOTIVATING EXAMPLE
In this section we explain two research challenges of the

problem and illustrate how they can be addressed with a
running example (Figure 1).

Challenge 1: Deriving the set of coverage requirements
RQ statically (prior to testing) is generally infeasible [44].
While interleaving coverage criteria are generally computed
with respect to a given test input [32], coverage-guided test
input generation needs to compute the coverage requirements
with respect to all possible test inputs. However, calculating
the executable domain of interleaving coverage criteria pre-
cisely requires context-sensitive and synchronization-sensitive
analysis that is machine undecidable for concurrent pro-
grams [44].

Challenge 2: Coverage-driven test code generation re-
quires the estimation of the additional interleaving coverage
contributed by each candidate test examined during test gen-
eration. Intuitively, only candidate tests that increase test
coverage have to be outputted. Simply inferring if a candidate
test ti is redundant by estimating cov(ti) is too expensive [54].
This is because the estimation involves exploring exhaustively
all feasible ti’s interleavings that satisfies the intended cover-
age requirements. This simple approach brings no benefits
over the coverage-oblivious approach, which outputs each
candidate ti and explores its interleaving space regardless if
ti is redundant or not.

Recently, Steenbuck and Fraser proposed ConSuite [56],
a coverage-guided test generation technique for concurrent
classes. First, it derives an approximated set of coverage re-
quirementsRQ with a context-insensitive and synchronization-
insensitive analysis, by permuting the byte-code instructions
that access the fields of the CUT according to a given pa-
rameterized interleaving coverage similar as partial inter-
leaving [32]. For example, in Figure 1 there are nine such
instructions a1, ..., a9. The interleavings σ1 = 〈ata

8 , atb
2 , ata

9 〉
and σ2 = 〈ata

4 , atb
1 , ata

5 〉 are two examples of statically com-
puted interleaving coverage requirements. Second, it uses
1\ is the set-theoretic difference operator.

CUT sout = new CUT();

CUT sout = new CUT();

Ȗ
2a1

a8
a9

a2
a1

�ͳ
cov(tB) = <�ସ�ଵ

, �ଵ�ଶ
, �ହ�ଵ

>

ȕ
1

sout.m1(0);
sout.m7();

sout.m2(0);
sout.m1(10);

࡭�ʹ�
Ȗ

2a3
a4
a5

a2
a1

�ͳ
ȕ

3

sout.m3(10); sout.m2(0);
sout.m1(10);

࡮�ʹ�

Ȗ
4a3

a4
a5

a8
a9
a6
a7
a7

�ͳȕ3
sout.m3(10); sout.m7();

sout.m5();

࡯�ʹ�
Ȗ

2

a8
a9
a6
a7
a3
a4
a5

a2
a1

�ͳ
ȕ

5

sout.m7();
sout.m5();

sout.m3(10)

sout.m2(0);
sout.m1(10);

ࡰ�ʹ�

cov(tC) = <�଻�ଶ
, �ଷ�ଵ

, �଻�ଶ
>

cov(tA) = <��଼ଵ
, �ଶ�ଶ

, �ଽ�ଵ
>

cov(tD) = <�ସ�ଵ
, �ଵ�ଶ

, �ହ�ଵ
>

CUT sout = new CUT();

CUT sout = new CUT();α α

αα

Figure 2: Examples of concurrent tests

sequential test generation guided by structural coverage to
obtain concurrent tests that increase interleaving coverage.
The structural coverage is measured by the coverage of those
instructions (i.e., a1, .., a9) that compose the interleaving cov-
erage requirements. For example, to cover the requirement
σ1, ConSuite uses sequential test generation [18] to obtain
two call sequences: β1 that covers the accesses a8 and a9 (in
the given order) and γ2 that covers the access a2. Then β1

and γ2 are assembled in the concurrent test tA in Figure 2
covering the interleaving σ1 = 〈at1

8 at2
2 , at1

9 〉. Unlike the com-
putation of interleaving coverage, computing the structural
coverage of a call sequence can be done precisely and effi-
ciently by keeping track of which instructions are executed
by the call sequence [54]. Concurrency testing is conducted
to determine whether the coverage requirements covered by
the concurrent test are feasible and fault-inducing. Similarly,
ConSuite generates the concurrent test tB to cover σ2.

ConSuite’s approach partially addresses the two above
mentioned challenges as it adopts a context-insensitive solu-
tion that likely misses the failing tests tC and tD in Figure 2.
Context-sensitivity is especially important for object-oriented
programs as the same instruction may be executed in mul-
tiple method call contexts [64]. For example, a1 accesses a
different memory location if it is triggered from m1 or m6.

First, the omission of context sensitivity can lead to both
infeasible requirements and missing requirements. While
attempting to cover infeasible requirements only wastes test-
ing resources, missing important coverage requirements is
more alerting because it compromises fault-detection capa-
bilities. An example of missing requirement is the faulty
interleaving 〈at2

7 , at1
3 , at2

7 〉, which is covered by the test tC .
ConSuite misses this requirement because it computes RQ
using context-insensitive analysis, which does not consider
that the instruction a7 might trigger more than one shared
memory access when the value of the field y is greater than
zero. Missing the requirement 〈at2

7 , at1
3 , at2

7 〉, test tC in Fig-
ure 2 is unlikely generated.

Second, the omission of context sensitivity can also result
in failure to trigger the faulty interleavings even when they
are covered by a test. For example, the faulty interleaving
σ2 = 〈ata

4 , atb
1 , ata

5 〉 is covered by both tests tB and tD in
Figure 2. However, σ2 cannot be manifested by tB because it
accesses a4 and a5 inside a synchronized block during which
a1 cannot occur. Incorrect generation of tB to cover σ2 would
prohibit subsequent generation of tD and hence fail to detect
the faulty interleaving. As such, we need to consider the
context of synchronization in generating concurrent tests.
Our intuition. As discussed, concurrent test genera-

tion can be effectively guided by interleaving coverage if
those covered interleavings are context-sensitive. Although

P
Input:

(CUT)

Concurrent Test

Assembler

sequences
repository

Output:
higher coverage seq. new concurrent tests

Call Sequence

Generator

Interleaving

Explorer
CUT sout = new CUT();

sout.m1(); sout.m3();

sout.m2(); sout.m4();

< Ƚ, Ⱦ ,γi >γn = Ⱦ CUT sout = new CUT();

sout.m1();

sout.m2();

Ƚ : Ⱦ:

n

L = {γi =1..n}
L

for each new test tk it
explores the interleaving

space of P(tk)

γn = Ⱦ failing tests

proceed to
the next
iteration

Figure 3: Overview of AutoConTest process at the nth iteration. It iterates until reaching a time budget B

static context-sensitive analysis is undecidable in general [44],
context-sensitive information can be computed efficiently and
precisely during dynamic sequential test generation. This
observation relieves us from computing the entire coverage
requirements before test generation. Instead, we can gener-
ate tests iteratively so that each test increases interleaving
coverage based on the coverage data that are collected during
the call sequence generation for the test. To facilitate the
collection of coverage data that contain the context-sensitive
information (e.g., flow information and execution of syn-
chronization statements) of each method call, we propose a
coverage metricM called sequential coverage. M is so de-
fined that it can be readily measured based on a call sequence
executed by a single thread. Coverage data that affectM
are collected. While we will discussM in the next section,
let us illustrate our intuition using the motivating example.

Figure 4 shows how AutoConTest generates concurrent
tests for the motivating example. At the first iteration, it
generates a call sequence δ1 that increases the sequential
coverage of test suite T . Since T is initially empty, all
method calls in δ1 increase the coverage. AutoConTest

generates the test t1 = (δ1||δ1) that covers the interleav-
ing 〈ata

8 , atb
2 , ata

9 〉. At the second iteration, AutoConTest

identifies a call sequence δ2 that increases the sequential
coverage of T since the method m3 was not invoked in δ1 and
the invocation of m5 in δ2 triggers one more shared memory
access than in δ1. The new concurrent tests t2 = (δ2||δ2)
and t3 = (δ2||δ1) increase interleaving coverage. At the third
iteration, AutoConTest generates δ3 that increases the se-
quential coverage of T because the invocation of the method
m5 executes different synchronization statements with respect
to m5’s invocation in δ2. Thus, δ3 is used to generate new
tests, including the failing test t5 = (δ3||δ2). We will ex-
plain in Section 4.2 how to find such high coverage sequences
systematically.

4. METHODOLOGY
AutoConTest is an iterative process consisting of three

major components (Figure 3)
1) The Call Sequence Generator (Section 4.2) navigates
the space of possible call sequences and selects one (denoted
by β in Figure 3) that improves T ’s sequential coverageM
(Section 4.1). It adds the selected sequence β (treated as γn)
to the generated sequence repository L. As a result, at the
nth iteration, L contains n call sequences {γi=1...n}.
2) The Concurrent Test Assembler (Section 4.3) accepts
a sequence β from the call sequence generator and weaves it
with all the n sequences {γi=1...n} in the repository L one
by one, assembling n new concurrent tests.
3) The Interleaving Explorer (Section 4.4) navigates
the interleaving space of the tests generated at the current
iteration and reports any failing tests.

AutoConTest iterates until reaching a given time budget.
Next we present the sequential coverage, followed by the
description of the three components.

m5,a6 ,a7,m5 m2,a2,m2 m7,a8 ,a9,m7 m1,a1,m1

m3,a3 ,l1 ,m4,a4 ,a5 ,m4,l2m3 m7,a8 ,a9,m7 m5,a6 ,a7 ,a7,m5

sout.m3(10); sout.m7(); sout.m5();

sout.m7(); sout.m5(); sout.m3(10);

m7,a8 ,a9,m7 m5,a6 ,a7 ,a7m5 m3,a3 ,m4,a4 ,a5 ,m4,m3

δ
1

sout.m5(); sout.m2(0); sout.m7(); sout.m1(1)

cov(t1) = <��଼ଵ
, �ଶ�ଶ

, �ଽ�ଵ
>

δ
2

t1 = (δ1 || δ1)

t2 = (δ2 || δ2)

t3 = (δ2 || δ1)

t4 = (δ3 || δ3)

t5 = (δ3 || δ1)

t6 = (δ3 || δ2)

cov(t5) = <�ସ�ଵ
, �ଵ�ଶ

, �ହ�ଵ
> bug

new new new new

new new

δ
3

cov(t2) = <�଻�ଵ
, �ଷ�ଶ

, �଻�ଵ
>

cov(t3) = <�ସ�ଵ
, �ଵ�ଶ

, �ହ�ଵ
>

new

bug

1st iteration

→ → → →

→ →

→

→→

→→→ → →→→

→ →

→→→→

→ →

2nd iteration

3rd iteration

Figure 4: AutoConTest running example

4.1 Sequential Coverage
This section presents a context-sensitive coverage metric
M on call sequences, referred to as sequential coverage. Let
E denote the trace of a call sequence δ, i.e., the ordered
sequence of events exhibited by a sequential (single-threaded)
execution of δ. An event can be one of the following:

• write and read accesses to object fields ai

• lock acquire and release events lj
• method enter −→m and exit ←−m events.

An access ai is encoded by the code location (at byte-
code level) that triggers ai. This abstraction ignores the
values of the shared memory accesses. We follow existing
work on interleaving coverage [32, 58, 67] and assume that
the manifestation of fault-inducing interleavings depends on
the exposure of erroneous inter-thread memory dependencies,
which are independent of the data values of the shared memo-
ries involved (value-independent assumption [67]). In Java, a
lock acquire event is generated when a synchronized block or
method is entered, and a lock release event is generated when
exiting the block or method. We encode these events by their
code location and type (i.e., lock, unlock). The enter/exit
events of a method m are encoded with m’s signature.

Definition 1. Given a call sequence δ=〈c1, . . . , cn〉, the
trace of a method call ci ∈ δ is the non-empty segment
Ei of E such that Ei contains only the events triggered by
the invocation of ci.

Definition 2. Given a call sequence δ, its sequential cov-
erage M(δ) is defined as the partition {E1, E2, . . . , En} of
E, i.e., the unordered set composed by the n method call
traces of E.

For example,M(δ2) = {〈
−→m3, a3, l1,

−→m4, a4, a5,
←−m4, l2,

←−m3〉
, 〈−→m7, a8, a9,

←−m7〉, 〈−→m5, a6, a7, a7,
←−m5〉} in Figure 4. Note

that the trace of a method call ci include all indirectly cov-
ered events, i.e., those covered by all callees of ci. We now
study the situation in which a call sequence increases the
sequential coverage of a suite T . Let L denote the cumulative
set of call sequences generated to assemble concurrent tests
at previous iterations, i.e., L={β, γ | (β || γ) ∈ T }. We
consider two method call traces to be equivalent iff they are
constituted by the same events in the same order.

Definition 3. A call sequence δ increases T ’s sequential
coverage iff δ’s coverage improvement over L i.e.,

∆M(δ,L) = {M(δ) \ ∪
|L|
i=1M(δi)} is non-empty.

We drop L from the notation ∆M(δ,L) becoming ∆M(δ)
if L refers to the cumulative set of call sequences generated to
assemble the tests before checking δ’s coverage improvement.
Consider the example in Figure 4. At the third itera-

tion, T = {t1 = (δ1||δ1), t2 = (δ2||δ2), t3 = (δ2||δ1)} and
L= {δ1, δ2}. The call sequence δ3 increases the sequential
coverage of T becauseM(δ3) contains one new method call
trace that is neither contained in M(δ1) nor M(δ2), i.e.,
∆M(δ3) = {〈

−→m3, a3,
−→m4, a4, a5,

←−m4,←−m3〉}. Thus, δ3 is used
to assemble new concurrent tests with the call sequences in
L, yielding to the fault-inducing test t5 = (δ3||δ1).
To distinguish a method call ci ∈ δ from the ones that

ci directly or indirectly invokes, we refer to ci as an outer-
most method call in the following discussion. The definition
ofM(δ) leverages an observation that the coverage can be
computed by omitting the sequential execution order of the
outermost method calls in δ without affecting concurrency
fault detection capabilities. This is because the general form
of thread-safety [23] does not guarantee that multiple calls to
a shared object of a thread-safe class are executed atomically
in the same thread [43]. These multiple calls require external
synchronizations [30, 31] to preserve atomicity. For example,
Figure 5 shows a concurrent test for the JDK Vector class, a1,
a2 and a3 are accesses to the field elementData. The inter-
leaving 〈at1

1 , at2
3 , at1

2 〉 throws an exception. However, it does
not expose a thread-safety violation or a concurrency fault
because the operations in thread1 are supposed to be com-
posed in the same atomic operation [30, 31]. Pradel et al. [43]
prune all of such interleavings during concurrent testing by
checking if every caught exception can also be triggered by a
linearization of the calls [12], e.g., 〈at1

1 , at1
3 , at1

2 〉 in Figure 5.
Instead, we avoid these false positives altogether by assuming
the interleavings that contain accesses triggered by the same
thread but different outermost method calls (e.g., the inter-
leaving in Figure 5) should not be tested, i.e., they are not
coverage requirements. An advantage of ignoring the order
of outermost method calls in a sequential call sequence exe-
cution is that the coverageM likely attains saturation faster.
For example, given δ1 = 〈sout.m1(1),sout.m2(1)〉 and
δ2 = 〈sout.m2(1),sout.m1(1)〉,M(δ1) =M(δ2) even if
the execution traces of δ1 and δ2 are different as they trigger
the same events but in a different order.

sout.clear(); thread2thread1
sout.addElement;͞a͟Ϳ; a1

a2

a3

NoSuchElementExceptionsout.firstElement();

Figure 5: Example of invalid atomic composition

4.2 Call Sequence Generation
At each iteration, the call sequence generation component

systematically explores the space of possible call sequences,
and it returns one, denoted by β, with the highest sequential
coverage improvement among those explored at the current
iteration. This sequence will be used to assemble new concur-
rent tests. As the cost of interleaving exploration increases
with execution length, when the component compares se-
quences with same degree of coverage improvement, it opts
for the shortest one (measured by the number of outermost
method calls). More formally, let us define the following rela-
tion on calls sequences. Given two sequences δ1 and δ2, δ1 is
“better than” δ2 in improving the sequential coverage, denoted
by δ1≻δ2, iff |∆M(δ1)|>|∆M(δ2)|, or (|∆M(δ1)|=|∆M(δ2)|
∧ |δ1|<|δ2|). Let Q denote the set of call sequences explored
by the component at a given iteration.

δ
B

SOUT
state

sout.m7();

SA

x=1
y=1
z=0

SB

x=1
y=1
z=0

<m7,a8 ,a9 ,m7>→ →

trigger identical method call traces

δ
A

<m1,a1 ,m1>→ →sout.m1(1);
<m2,a2 ,m2>→ →

new

new

sout.m3(-1);

new

sout.m5();
<m5,a6 ,a7 ,a7, m5>→ →

<m3,a3 ,l1 ,m4,a4 ,a5 ,m4,l2m3>→ → →→

sout.m2(1); sout.m7();
<m7,a8 ,a9 ,m7>→ →

new

sout.m5();
<m5,a6 ,a7 ,a7m5>→ →

new

sout.m2(1);
<m2,a2 ,m2>→ →

new

<m1,a1,m1>→ →sout.m1(1);

<m6,a1 , m6>→ →sout.m6(b);

new

α CUT sout = new CUT();

δ
D

SOUT
state

SC

x=-1
y=1
z=1

SD

x=-1
y=1
z=1

δ
C

trigger identical method call traces

…. ….….

<m1,a1 ,m1>

→→
new

sout.m1(-1);

δ”

δ’
B b = new B();

Figure 6: Examples of redundant sequence δB

Definition 4. The component’s output is an optimal call
sequence β ∈ Q such that ∆M(β)6= ∅ ∧ ∄ δ ∈ Q, δ ≻ β

The search space is represented as a rooted, directed and
potentially infinite tree T whose root node is a call sequence
α that instantiates the object SOUT. The instantiation in-
volves making a constructor call and additional method calls
if necessary to setup non primitive parameters. The edges
represent method calls. Each node in the tree represents
a call sequence that corresponds to the ordered sequence
of the method calls along the path from the root to the
node. Figure 6 shows the portion of the search space repre-
senting four sequences δA, δB , δC and δD for the motivat-
ing example in Figure 1. For instance, the node δB repre-
sents the sequence 〈 CUT sout = new CUT();sout.m1(-
1);sout.m1(1);sout.m7()〉. The search space is explored
by dynamically building the tree starting from the root.
To dynamically build the tree, we adapt the sequence

extension operator of Randoop [40] to the node traversal
operator, which traverses from a node to its child as follows.
Given a method m and a node representing sequence δ, the
node traversal operator produces a child node representing a
new sequence δ′. The new sequence is formed by appending
to δ a sequence of method calls (i.e., an edge) with m being
the last method call. Other method calls are added before
m in the appending sequence to create m’s non-primitive
parameters, if any. Note that alternative extension operators
like those presented in Evosuite [21] are unsuitable. This
is because they change or insert method calls at random
sequence position, which compromises the tree traversal due
to tree structure likely changes at each extension.

The candidate methods (CM) to extend a sequence (node)
are those methods in P such that they have at least one
parameter p of type CUT, which can be binded to the shared
object SOUT (see Section 2.1). Each input parameter pi is
confined to a finite set of possible values. The tree traversal
operator selects a parameter’s value in the following way.
If pi is a primitive type, its value is chosen from a pool of
representative values. If pi is a non-primitive type, there are
two possibilities: if pi is of type CUT, it is always binded to
the object reference of SOUT; otherwise it is always binded
to a new object of type pi, which is created by appending
appropriate method calls chosen from a pool of representa-
tive sequences. For example, in Figure 6 the node δ′ is the
extension of α with the method call sout.m1(). While δ′′

is the extension of δ′ with method calls “B b = new B();
sout.m6(b);”. Since m6 has a non-primitive parameter of
type B, the tree traversal operator adds the method calls to

create it. AutoConTest systematically explores the possible
extensions of a node with different combination of parameter
values. The pools of primitive and non-primitive parameter
values are constructed by Randoop pseudo-deterministically
(using the same random seed [40]) at each iteration. Auto-

ConTest uses different random seeds across iterations to
achieve diversity. As a result, the set of out-going edges of
every node is the same at each iteration, this property is
essential to our tree traversal.

A key challenge is how to effectively construct the search
space of possible call sequences and compare their coverage
improvements. However, an exhaustive construction of such
a search space is infeasible even by bounding the length of call
sequences to a given value [11, 36]. To address the challenge,
AutoConTest deploys a coverage-driven search traversal
that predicts before extending a node to its children if these
children can have a descendant that represents an optimal
call sequence β. If not, these children are skipped. The
prediction is made by reasoning about the program state and
the coverage reached by each visited call sequence.

Each execution of a call sequence δ=〈c1, . . . , cn〉 induces a

sequence of state transitions S0

c1−→ S1

c2−→ S2 . . .
cn−→ Sn. Let

Si−1 denote the state of ci’s parameters before ci is invoked,
and Si the state after. Like Xie et al. [65], we assume that
the sequential execution of a method call ci is deterministic
given the state Si−1 Under this assumption, the method call
cn+1 triggers the same method call trace if it is appended at
the end of two different call sequences that reach the same
state Sn. For example, the method call sout.m5() triggers
the same method call trace 〈−→m5, a6, a7,

←−m5〉 if it is appended
after δA or after δB . This is because δA and δB reach the
same state of m5’s parameters, denoted by S(δA) and S(δB),
respectively. Therefore, exploring the possible extensions of
a call sequence is redundant if we have already explored the
possible extensions of another call sequence that reaches the
same state and with better coverage improvement.

Definition 5. A call sequence δ is redundant iff ∃δ∗ ∈ Q
such that S(δ) = S(δ∗) ∧ (∆M(δ) ⊂ ∆M(δ∗) ∨ (∆M(δ) =
∆M(δ∗) ∧ |δ∗| ≤ |δ|)).

Theorem 1. The unexplored descendants of a node repre-
senting a redundant call sequence do not need to be explored
in order to reach the optimal solution β.

Proof. It is proved by contradiction. Let assume that a
sequence δ is redundant and the optimal β is a descendant of
δ. From Def. 5, it exists a sequence δ∗ such that ∆M(δ) ⊆
∆M(δ∗), which implies (1). Because each node has the same
set of out-going edges, S(δ) = S(δ∗) and by assuming that
sequential executions are deterministic, it exists a descendant
of δ∗ denoted by β∗ such that the set of method call traces
triggered along the path from δ∗ to β∗, denoted byM(β), is
identical to the set of method call traces triggered along the
path from δ to β, denoted byM(β

∗
). This implies ∆M(β) =

∆M(β
∗
). Together with (1) we obtain (2). Because ∆M(β) =

{∆M(δ) ∪ ∆M(β)} and ∆M(β∗) = {∆M(δ∗) ∪ ∆M(β
∗
)},

(2) and ∆M(δ) ⊆ ∆M(δ∗) we obtain (3). If |∆M(β)| <
|∆M(β∗)| β 6≻ β∗ (contradiction). If |∆M(β)| = |∆M(β∗)|,
from (3) we have that |∆M(δ)| = |∆M(δ∗)| but |δ∗| ≤ |δ|
(Def. 5), thus β 6≻ β∗ (contradiction).

|∆M(δ)| ≤ |∆M(δ∗)| (1)

|∆M(δ)|+ |∆M(β)| ≤ |∆M(β
∗
)|+ |∆M(δ∗)| (2)

|∆M(β)| ≤ |∆M(β∗)| (3)

Function callGen(δ)
if ∆M(δ) is saturated then

return δ

β ← δ // init best seq with prefix δ
for each m ∈ CM do

δ′ ← δ ∪m // sequence extension

execute δ′ // gathering runtime data
if DepthPruning == false then

β′
← callGen(δ′) // recursion

if β′
≻ β then

β ← β′

if BreadthPruning == true then

break for loop // stop extending δ

return β

Figure 7: Call sequence generation algorithm

For example, assume that the call sequences δA, δB , δC
and δD in Figure 6 are explored in the given order at an
iteration. Let S(δA) denote the SOUT’s state after executing
δA. S

A
n and SB

n are equivalent as SOUT’s fields have the same
values. Thus, for each path from δA to one of its descendants,
there exists a corresponding path from δB to one of its
descendants such that the method call traces triggered along
these two paths are identical. Since ∆M(δB) ⊂ ∆M(δA), the
descendants of δB cannot lead to a sequence with a coverage
improvement higher than any of the call sequences extended
from δA. Thus, children of δB can be skipped.
Considering the additional method call traces covered

∆M(δ) rather than the degree of coverage improvement
|∆M(δ)| by a call sequence is crucial to guarantee a lossless
pruning. Consider the call sequences δC and δD yielding
to the same state of the object SOUT. Although δD has
a lower degree of coverage improvement than δC , ∆M(δD)
contains the method call trace 〈−→m3, a3, l1,

−→m4, a4, a5,
←−m4,

l2,
←−m3〉 which is not in ∆M(δC), i.e., ∆M(δD) 6⊂ ∆M(δC).

Thus δD’s subtree has to be explored as it could contain the
optimal call sequence β. For instance, the SOUT’s state of
SC
n and SD

n has z = 1 and it cannot be set at zero by any
subsequent method call. As a result the method call trace
triggered by the method m3 in δD cannot be triggered by
any edge in the subtree of δC and δD (see Figure 1). How-
ever, the method call traces in ∆M(δC) can be triggered
in the subtree of δD, thus there exists a descendant of δD
with higher coverage than any descendants of δC . We now
describe our call sequence generation algorithm (Figure 7)
and the search space pruning strategies (Figure 8).
Search order. We choose to traverse the tree using

depth-first search (DFS). Since coverage tends to increase
with sequence length, the DFS strategy likely finds a higher
coverage sequence faster than the breadth-first search (BFS).

Stopping criterion. There may exist some sequences
that can be continuously extended to give new non-redundant
sequences. Thus, without a well-defined stopping criterion
the algorithm could easily exhaust all the available testing
time budget. A possible solution is to impose an upper bound
on the sequence length [11, 36]. The issue of this approach is
that there is no pragmatic way to choose the best bound for a
given CUT. Instead, the algorithm adopts a saturation based
stopping criterion. Let δ′ denote an extended call sequence
of δ with a method. The algorithm stops extending δ′ but
continues to extend δ with another pending method if none
of the latest k extensions of δ′ exhibits coverage improvement.
If the algorithm terminates without finding a sequence β

that improves the sequential coverage, it is re-launched with
the saturation level k incremented.

DepthPruning

sout.m1();

δ

δ’

sout.m2();

Stop extending δ’ if either

D1 ∨ D2 ∨ D3

sout.m3();

δ

δ’

sout.m2();sout.m1();

BreadthPruning
Stop extending δ if either

B1 ∨ B2

Figure 8: Search pruning strategies

Gathering runtime data. Each newly explored se-
quence is executed to collect the following information.

1. δ.excp, a binary value that is true if the execution of δ
throws a caught or uncaught exception; false otherwise.

2. ∆M(δ), which is computed by executing an instrumented
version of the program under test.

3. S(δ), the state of the object SOUT after executing δ. It
is obtained by serializing SOUT in a deep copy semantic.

Note that our search space exploration strategy is carefully
designed so that we need only to consider the object SOUT
for representing the state of call sequences. This is because
SOUT is the only object that will be reused in later exten-
sions. There are two useful properties relating a sequence
δ and its extension δ′. ∆M(δ) ⊆ ∆M(δ′) (property 1) and
| δ |<| δ′ | (property 2). These properties enable us to opti-
mize the coverage computation. First, there is no need to
compute the entire sequential coverage of δ′ from scratch.
Instead, the coverage can be computed by combining the
previously computed coverage of δ and the covered method
call traces of the newly added extension. This significantly
reduces the computation cost. Second, if the coverage of δ′

does not improve, we can conclude δ′ 6≻ δ by property 2.
Depth Pruning The algorithm stops to extend δ′ but

continues to extend δ with another pending method, if any
of the following conditions holds.
D1: δ′.excp = true. If δ′ throws an exception, it is not
extended because all sequences with δ′ as prefix would also
throw the exception. This pruning strategy was first pre-
sented by Pacheco et al. [40]. The occurrence of an exception
likely indicates an illegal sequence, which are more likely to
be generated than legal sequences because only a small set
of all possible sequences is legal [10]. Fortunately, conscious
developers mostly anticipate possible misuses of public meth-
ods and protect their code against such misuses by checking
the object state or the parameter values at the beginning of
these methods, throwing an exception upon misuses.
D2: |∆M(δ′)|=|∆M(δ)| ∧ S(δ′)=S(δ). If δ′ neither increases
the coverage nor changes the program state, it is not extended
because δ′ brings no extra benefit over its prefix δ. In fact,
δ′ is redundant with respect to δ by properties 1 and 2.
D3: |∆M(δ′)|=|∆M(δ)| ∧ δ′ is redundant. Although δ′ is
non-redundant with respect to δ if D2 is false, δ′ could still
be redundant with respect to other sequences that have been
explored at the current iteration. We check if δ is redundant
by tracking the mapping between each observed state S and
the sequential coverage of those sequences with state S.

Breadth Pruning. The algorithm stops the “breadth”
visit of a node, i.e., it avoids extending δ with any pending
methods if either of the following conditions is met.
B1: |∆M(δ′)|>|∆M(δ)| ∧ S(δ′)=S(δ). If this is true, δ

becomes redundant with respect δ′ by property 1 and 2.
Note that the first time the algorithm extended δ, δ was not
redundant (otherwise δ would have not been extended).
B2: δ is redundant. This check is analogous to D3.

4.3 Concurrent Test Assembler
Given a call sequence β returned by the Call Sequence

Generator component at the current iteration and the set of
returned sequences at previous iterations L={γi}, the Con-
current Test Assembler component creates new concurrent
tests as follows. It updates L with β and then creates |L|
new concurrent tests by assembling β with each γi in L, i.e.,
{ti = (β || γi) ∀γi ∈ L}. For instance, at the third iteration
in the running example in Figure 4, AutoConTest creates
three new tests t4, t5 and t6 by assembling δ3 (i.e., β at the
third iteration) with δ3 (itself), δ1 and δ2. As a result, by
construction all new method call traces covered by β are
concurrently pair-wise tested with all method call traces in
L. This facilitates the improvement of interleaving coverage
because covering a new pair of method call traces is a con-
dition necessary to cover a new feasible and fault-inducing
interleaving. For example, to cover the feasible and fault-
inducing interleaving 〈at14 , at21 , at15 〉 in Figure 1, a concurrent
test needs to execute concurrently the pair of method call
traces {〈−→m3, a3,

−→m4, a4, a5,
←−m4,←−m3〉} and {〈−→m1, a1,

←−m1〉}.

Theorem 2. A concurrent test tx = (β || γ) covers a new
pair of concurrent method call traces, if tx increases the
interleaving coverage of T , i.e., ∃ feasible and fault-inducing

interleaving x ∈ cov(tx) such that x 6∈ ∪
|L|
i=1cov(ti).

Proof sketch. By contradiction, assume that tx exists and it
does not cover a new pair of method call traces. For x being
a feasible and fault-inducing interleaving not covered in T
there could be only two cases: (1) x contains a newly covered
shared memory access with respect to all sequences in T
(2) x is already covered in T but the memory accesses in x

are executed either by a new intra-invocation path or under
a different sequence of synchronization operations, which
makes x feasible and fault-inducing in tx but not in T . Both
cases (1) and (2) require that either β or γ covers a new
method call trace. (contradiction).

An additional check could be performed on each new pair
to infer whether they are relevant for the given interleaving
coverage criterion. To let AutoConTest be applicable to
any criteria, we choose to not perform this check. Neverthe-
less, covering all possible pairs is a sufficient condition to
test adequacy, regardless the criterion considered.

4.4 Interleaving Explorer
A concurrent test can exhibit many interleavings. Given

the concurrent tests assembled at a given iteration, the Inter-
leaving Explorer component, therefore, identifies and tests
the interleavings that match the specified interleaving cov-
erage criterion. A key challenge is to identify and test all
coverage requirements covered by each concurrent test. It
is because, when a call sequence is executed concurrently
with other sequences, it can manifest a different behavior
(i.e., triggers different method call traces) from its sequential
one. This phenomenon is referred to as concurrent inter-
ference, which occurs when multiple sequences access and
mutate the shared object SOUT concurrently. When this
phenomenon occurs, the method call trace that can increase
the interleaving coverage might not be executed. A method
is subject to concurrent interference if the SOUT’s state

start

m3,a3 ,l1 ,m4,a4 ,a5 ,m4,l2m3
→ → → →

CUT sout = new CUT();

δ1�ͳ δ3

sout.m7();

sout.m5();

sout.m3(10);

sout.m5();
sout.m2(0);

sout.m7();
sout.m1(1);

�ʹ
<�ૡ�૚, �૛�૛, ��ૢ૚>

CUT sout = new CUT();

x=0
y=0
z=0

α
t5

lock
a8
a9

unlock
a6
a7
a6
a7
a3
a4
a5

<�ସ�ଵ
, �ଵ�ଶ

, �ହ�ଵ
>

sout.m7();
sout.m5();

sout.m1(1);
sout.m1(1); sout.m3(10);x=0

y=1
z=0

SOUT
state

PTA active testing

restore SOUT’s state

coverage requirements

δ1

�ͳ
δ3 �ʹ

α
store SOUT’s state

trace collection

CUT sout = new CUT();

start

a6
a7

lock
a2

unlock
lock
a8
a9

unlock
lock
a2

unlock

�ͳ �ʹ
sout.m3(10);

sout.m5();
sout.m2(0);
sout.m7();

<�ସ�ଵ
, �ଵ�ଶ

, �ହ�ଵ
> <�૝�૚, �૚�૛, �૞�૚>

infeasible

feasible infeasible

�ͳ �ʹ �ͳ �ʹ
…..

CUT sout = new CUT();

schedule 1 schedule 2
δ3 δ1

example of interference

m1,a1 ,m1→ →

off-line on-line

Figure 9: How AutoConTest addresses the problem of interference during concurrent execution

when, the method is called in a concurrent test, differs from
that when the method is called in a sequential execution.

For example, consider the sequences δ1 and δ3 in Figure 4,
the sequential execution of δ3 triggers the method call trace
〈−→m3, a3,

−→m4, a4, a5,
←−m4,←−m3〉, while that one of δ1 triggers

〈−→m1, a1,
←−m3〉. The fault-inducing interleaving 〈at1

4 , at2
1 , at1

5 〉
can be triggered (i.e., covered) only if these two method call
traces are concurrently executed. Figure 9 (left) shows a pos-
sible concurrent interference during the concurrent execution
of the test t5 = (δ3 || δ1) that makes δ3 trigger a differ-
ent method call trace 〈−→m3, a3, l1,

−→m4, a4, a5,
←−m4, l2,

←−m3〉 that
does not cover the faulty interleaving, i.e., 〈at1

4 , at2
1 , at1

5 〉 is
infeasible because the accesses a4 and a5 are executed inside
a synchronized block. The concurrent interference from δ1
modifies the value of the SOUT’s field y before δ3’s method
invocation of m5 uses the old value of y to set the field z

to a value different from zero. If z is zero, the invocation
of m3 takes a different execution path, triggering a different
method call trace.

To address the challenge, we adopt Predictive Trace Anal-
ysis (PTA) [53] to identify the coverage requirements, and we
use a dedicate thread scheduler algorithm to avoid concurrent
interferences while testing these requirements.
PTA (e.g., [26, 28, 41, 55, 63]) runs a concurrent test t

with an instrumented version of the program, generating an
execution trace of memory accesses and concurrency oper-
ations. Then, it explores the interleaving space of a test t

off-line by re-shuffling the order of the memory accesses in
the trace to match those interleavings required by a given
coverage criterion. Then, it prunes the interleavings that are
infeasible using a lockset/happens-before checker [28]. For
example, 〈at18 , at22 , at19 〉 is infeasible because the three accesses
are protected by the same lock. Our intuition is that PTA
can still explore t’s interleaving space even if the execution
trace is collected by executing the two threads sequentially,
one after the other. Thus, it can effectively identify the
coverage requirements without suffering from concurrent in-
terference. Figure 9 shows how AutoConTest executes
the test for collecting the execution trace to be analyzed
by PTA: (1) AutoConTest creates the object SOUT and
saves its state. (2) Thread τ1 executes δ3 until completion.
(3) AutoConTest restores the initial state of the object
SOUT to guarantee that the execution of δ1 delivers the
same sequential coverage as that observed during the call
sequence generation. (4) Finally, thread τ2 executes δ1.
The retained interleavings (e.g., 〈at1

4 , at2
1 , at1

5 〉) are then
tested with real executions to check if they manifest faulty
behaviors (e.g., crashes, hangs or assertion violations). The
interleavings are enforced using a thread scheduler algorithm
(i.e., active testing). Upon calling the methods that trigger
the shared memory accesses involved in the interleaving to be
tested (e.g., sout.m3(10) and sout.m1(1)), the algorithm
ensures that the state of SOUT is the one observed when the
associated call sequence is executed sequentially. This is to

avoid concurrent interference to binding the state of SOUT
arbitrarily. Intuitively, there are two candidates of SOUT’s
state. The SOUT’s state reached by the sequential execution
of δ3 before invoking sout.m3(10), and the state reached by
the sequential execution of δ1 before invoking sout.m1(1).
So, for each interleaving to be tested, we run active testing
on two concurrent test schedules. Figure 9 shows the two
schedules for the interleaving 〈at18 , at22 , at19 〉. In one schedule,
we concurrently invoke sout.m3(10) and sout.m1(1) on
the SOUT’s state reached by the sequential execution of δ3
before invoking sout.m3(10). In the other schedule, we
concurrently invoke sout.m3(10) and sout.m1(1) on the
SOUT’s state reached by the sequential execution of δ1 before
invoking sout.m1(1). In the running example in Figure 9,
the first schedule succeeded to trigger the faulty interleaving.

5. EVALUATION
In this paper, we propose AutoConTest, a context-

sensitive and coverage driven test code generation technique
for concurrent classes. We evaluate if AutoConTest is effec-
tive in exposing concurrency faults and able to achieve high
interleaving coverage. The interleaving coverage considered
in our experiments is the set of problematic interleavings
that match the access patterns violating atomic-set serializ-
ability [61]. We carried out a series of experiments to answer
the following research questions:
RQ1: Given a time budget, how effective is AutoCon-

Test in detecting concurrency faults and achieving high
interleaving coverage?
RQ2: Is AutoConTest more effective than random-

based test generation [43]?
RQ3: Are AutoConTest’s search pruning strategies

effective in exploring the search space? Can they mostly
achieve a lossless pruning?
Implementation. To evaluate our technique, we imple-

mented AutoConTest into an automated tool for Java
classes. The test generation phase adapts Randoop [40] to ex-
tend call sequences and to generate runnable Java test code.
The adaptation is presented in Section 4.2. To compute
the coverage metric in the execution-feedback process, we
instrumented the program at load-time using the ASM frame-
work [1]. AutoConTest uses the XStream framework [9]
to serialize object states. The framework can serialize any
Java objects without requiring their classes to implement the
java.io.Serializable interface. To check if a method
invocation modifies the state of its object receiver, we com-
pared the serializations obtained by XStream before and after
the invocation. We adopted an efficient and conservative
comparison approach: two object states are equivalent if
the two serializations are identical; otherwise they are not
equivalent. The interleaving explorer is built upon the PTA
technique AssetFuzzer [28]. We modified its active-testing
phase according to the modifications discussed in Section 4.4.

Table 1: Subjects description and the experimental results with a time budget of one hour

Subject Description AutoConTest ConTeGen∗

BUG Code base Class Under Test (CUT) CUT Issue Time First # Suite |cov(t)| Random Time First # Suite |cov(t)|

ID SLOC ID Fault (ms) Tests Size Tot. Seed Fault (ms) Tests Size Tot.

1 Apache Commons 2.4 [..].lang.math.IntRange 278 [2] 22,438 7 2157 19 1 66,357 110 1742 91

2 Google Commons 1.0 [...]AbstractMultiMap$AsMap 1125 [6] 28,967 3 19 1 0 *1hr 130 1898 0

3 Java JDK 1.1.7 java.util.Vector 216 [4] 64,506 17 1437 2 4 1,014,452 185 1232 2

4 JFreeChart 0.9 [...]chart.axis.NumberAxis 1298 [3] 35,075 1 114 23 0 156,846 99 1351 3

5 Java JDK 1.4.1 java.util.logging.Logger 992 [7] 45,141 3 105 1 0 *1hr 230 3161 0

6 Java JDK 1.4.2 java.util.Vector 326 [5] 29,588 1 104 33 0 2,254,045 167 2729 1

Subjects. We performed our experiments on six known
real-world concurrency faults from four popular codebases,
which have been used in the evaluation of related works [43,
56]. For each fault, Table 1 gives the following information:
the subject ID that is used in the rest of the paper, the
name and version of the code base, the Class Under Test
(CUT), the number of Source Lines Of Code (SLOC) of the
CUT (including CUT’s non-abstract super class if any) and
the bug report links from the issue-tracking systems. Note
that all these subjects have a single fault. However a single
concurrency fault might trigger multiple faulty interleavings.

5.1 RQ1 - Cost/Effectiveness
For each subject, we ran AutoConTest with a time

budget of one hour. The measured elapse time includes the
time for test generation and interleaving exploration. The
Column “Time First Fault” in Table 1 indicates the elapsed
time to trigger the first faulty interleaving with active testing.
The Column “# Tests” indicates the number of concurrent
tests generated and explored within the given time budget.
The Column“Suite Size” shows the size of the tests generated
for each subject. Like previous works, test size was measured
by the number of (non-native libraries) method calls [20, 24].
The Column “|cov(t)| Tot.” indicates the cumulative number
of feasible coverage requirements that have been successfully
triggered by active testing. AutoConTest detected the first
fault for all subjects with an average time of 38 seconds. On
average for all subjects, 17% of the time budget was spent
on test generation while the remaining time on interleaving
exploration. In the experiment, the first test generated by
AutoConTest for each subject successfully revealed the first
fault. This demonstrates that AutoConTest is effective in
generating a small number of effective concurrent tests that
expose concurrency faults.

5.2 RQ2 - Comparison with ConTeGen
We compared AutoConTest with ConTeGen [43], a state-

of-the-arts technique for the random generation of concurrent
test code. The comparison is based on ConTeGen’s original
implementation [8], which is publicly available. We ran Con-
TeGen with the same time budget of one hour, five times
using different random seeds [43]. All runs of ConTeGen
did not detect any concurrency fault within the time bud-
get. ConTeGen uses stress-testing as interleaving exploration
methodology, which is known to be ineffective in exploring
interleaving spaces [41, 64]. For fair comparison, we con-
ducted further experiments to compare AutoConTest and
an approach that explores the interleaving space of the tests
generated by ConTeGen using the same interleaving explo-
ration component of AutoConTest. We call this approach
ConTeGen∗. It enables us to compute the coverage require-
ments covered by ConTeGen tests. Table 1 shows the best
result among the five different runs of ConTeGen∗. Column

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 600 1200 1800 2400 3000 3600

%
 c

o
v
e

ra
g

e

Time (seconds)

AutoConTest

ConTeGen

Figure 10: Coverage comparison

“Random Seed” indicates the seed value that achieved the
best result (in terms of first fault detected). All runs of
ConTeGen∗ failed to detect the two faults with ID 5 and
2. The first faults of the remaining subjects were detected
between 1 to 37 minutes, with an average of 14.5 minutes.
We calculated the cumulative coverage in percentage at the
same interval of time and we compute the average for each
subject. Figure 10 shows the comparison results. On average,
AutoConTest achieved in less than 40 seconds the same
percentage of coverage achieved by ConTeGen∗ in one hour.
We notice that our approach achieved higher coverage than
much larger test suite computed randomly. This suggests
that the effectiveness of AutoConTest mainly arises from
the ability to cover corner program behaviors, which are
difficult to cover by randomly generating more tests. In
fact, randomly generated tests are subject to redundancy as
reflected by the slow increase in ConTeGen∗’s cumulative
coverage over time in Figure 10.
We were not able to directly compare with ConSuite [56]

as the tool is not publicly available. However, we noticed
that 58% of the tested interleavings involve the same set
of static instructions under different calling contexts. This
suggests the importance of context sensitivity.

5.3 RQ3 - Search Pruning Strategies
The goal of this research question is to evaluate the Call

Sequence Generation Component. For this set of experiments
we ran the component in isolation, i.e., without exploring the
interleaving space of the generated tests. We ran two versions
of the component. One version is obtained by enabling all
the search pruning strategies (see Figure 8). The other
version is obtained by disabling all pruning strategies except
D1, which is already supported by Randoop [40]. We ran
both versions on our subjects with a time budget of one
hour using the same initial saturation stopping criterion, i.e.,
saturation level of k = 3 see Section 4.2. Table 2 shows
the results. The first iteration of all subjects terminated
in a few seconds (3 sec. on average) for the version with
pruning strategies enabled whereas the first iteration of all
subjects failed to terminate within an hour for the version
with pruning strategies disabled. The second column of Table
2 shows the saturation time of the enabled version, i.e., the
time of the last returned sequence. The saturation level
attained at the last returned sequence was k = 84 on average
for all subjects, while the average number of iterations (i.e.,

Table 2: Search pruning strategies evaluation

AutoConTest pruning strategies enabled Disabled

BUG Time Cum. Optimal β first iteration Optimal β first iteration

ID Saturation |∆M| Time (ms) |∆M(β)| |β| Time (ms) |∆M(β)| |β|

1 8,151 30 1,598 25 43 *1hr 25 43

2 4,505 7 1,741 6 11 *1hr 6 11

3 14,070 71 1,931 23 43 *1hr 24 48

4 301,605 70 7,098 56 91 *1hr 56 91

5 1,329,381 53 2,911 24 60 *1hr 24 60

6 452,560 344 2,866 44 88 *1hr 44 87

returned sequences) was on average 20. Recall that if the
component terminates the exploration without finding a call
sequence that improves the coverage, it is re-launched with
the saturation level k incremented. The third column shows
the number of distinct method call traces covered by the
returned sequences.

We also evaluated if the sequences returned by the enabled
version at the first iteration were optimal, by comparing them
with the optimal sequences returned by the disabled version
upon the expiry of time budget. For only two subjects, the
sequence returned by the enabled version was sub-optimal.
For the subject with ID 3, the coverage improvement was
23 instead of 24. For the subject with ID 6, both disabled
and enabled versions returned a call sequence with the same
coverage, but the disabled versions returned a sequence with
one method call shorter. This is likely a negligible cost as
the component terminated 1530× faster, and the first fault
was detected by the first generated test for all subjects (see
RQ1). We conjecture that the lossy pruning could have been
caused by the imprecision of the serialization library.

6. RELATED WORK
Concurrency testing. Existing techniques on test au-

tomation for concurrent programs focus mostly on improving
the effectiveness of concurrency testing by exposing the inter-
leavings that cause concurrency anomalies (e.g., [16, 17, 26,
28, 37, 41, 50, 55, 64]). Instead of generating test code, these
techniques explore the possible interleavings arising from
the concurrent executions of a given test code. The fault
detection effectiveness of these techniques depends on the
capability of the given test code to cover faulty interleavings.
AutoConTest aims to improve their effectiveness by auto-
matically generating suites of concurrent tests that achieve
high interleaving coverage. In fact, our interleaving explorer
component can be replaced with any of these techniques.
Like AutoConTest’s coverage metric M, the metric

HaPSet [64] also captures the execution context of shared
memory accesses. However, unlikeM, which analyzes single-
threaded executions, HaPSet analyzes the interleavings in-
duced by multi-threaded executions. HaPSet was intended
to guide interleaving exploration, this metric would not be
effective to guide test code generation as one should infer if
a concurrent test increase interleaving coverage before the
expensive interleaving exploration.

Automated test code generation for sequential pro-
grams has been an active research topic, leading to the
development of various fully-fledged tools [14, 21, 22, 40,
59]. Since they aim primarily at sequential programs, they
do not address the issues of shared memory accesses and
interleaving coverage. Efforts have recently been made to ex-
tend popular techniques to generate concurrent tests [38, 43,
56]. These efforts can be broadly divided in two categories:
random-based [38, 43] and search-based [56]. Random-based

techniques generate tests by randomly assembling method
calls into concurrent tests. A major drawback of these tech-
niques is that randomly generated tests are likely to cover
interleavings redundantly (see Section 5.2). Instead, Au-

toConTest generates tests guided by a coverage criterion
that helps generate tests that increase interleaving coverage.
Search-based techniques generates tests by first estimating
coverage requirements and then by guiding the test genera-
tion towards these requirements. As discussed in Section 3,
collecting the entire set of coverage requirements statically
is infeasible for concurrent programs [44]. Instead, Auto-

ConTest collects coverage requirements dynamically during
systematic exploration of method call sequences.
Automated test input generation. Symbolic execu-

tion [27] analyses a program source code to automatically
generate test inputs (data values) to improve code cover-
age and expose software bugs. Studies were conducted to
extend Dynamic Symbolic Execution (DSE) for concurrent
programs [15, 35, 45, 51]. However, DSE alone does not
generate test code. We believe that AutoConTest’s effec-
tiveness could be further improved by incorporating DSE
into our call sequence generation component.
Systematic exploration of method sequences. Tech-

niques have been proposed to systematically explore method
call sequences for testing sequential programs [11, 36, 62, 65].
Like AutoConTest, these techniques also leverage object
state matching to prune the search space [62, 65]. Since it
is not their goal to find an optimal sequence, they ignore
the coverage during state matching. Ignoring such coverage
would miss the optimal sequence as explained in Figure 6.

Synthesis of failing tests. Recently, Samak et al. pro-
posed a series of techniques for constructing test drivers that
expose concurrency faults [46, 47, 48, 49]. Unlike Auto-

ConTest, these techniques do not generate test code from
scratch. Instead, they require a test suite of sequential tests
as an input (i.e., seeds). These techniques infer if there exists
a particular (concurrent) combination of two seeds that could
lead to a deadlock [46, 47, 48] or data race [49]. If so, they
are assembled into a concurrent test. The effectiveness of
this approach relies on the given seeds. The fault-detection
capability of these techniques could be further improved by
seeding the sequences generated by AutoConTest.

7. CONCLUSION
In this paper, we presented AutoConTest, an automated

coverage-driven approach to generate code for effective con-
current tests that achieve high interleaving coverage and
expose concurrency faults quickly. Our experimental results
showed that the coverage requirements dynamically obtained
via systematic exploration of call sequences are effective in
increasing interleaving coverage. Moreover, our experimental
results showed that this systematic exploration is tractable
with the use of our search space pruning strategies.

In the future, we plan to evaluate AutoConTest on
other types of interleaving coverage criteria and to build
better pools of the parameters values used to explore the
space of call sequences. For instance, using DSE to generate
primitive-type values based on a method’s control flow.

8. ACKNOWLEDGMENTS
The research was partially funded by Research Grants

Council (General Research Fund 611813) of Hong Kong.

9. REFERENCES

[1] ASM Java Bytecode Manipulation Framework.
http://asm.objectweb.org/

[2] LANG-481.
https://issues.apache.org/jira/browse/LANG-481

[3] Jfreechart-278.
http://sourceforge.net/p/jfreechart/bugs/278/

[4] JDK-4334376.
https://bugs.openjdk.java.net/browse/JDK-4334376

[5] JDK-4791557. http://bugs.java.com/bugdatabase/
view bug.do?bug id=4791557

[6] Guava-339. https://code.google.com/p/
guava-libraries/issues/detail?id=339

[7] JDK-4779253 http://bugs.sun.com/bugdatabase/
view bug.do?bug id=4779253

[8] ConTeGen. http://thread-safe.org/download

[9] XStream framework. http://xstream.codehaus.org/

[10] S. Artzi, M. D. Ernst, A. Kiezun, C. Pacheco, and
J. H. Perkins. Finding the Needles in the Haystack:
Generating Legal Test Inputs for Object-oriented
Programs. MIT-CSAIL-TR-2006-056, 2006.

[11] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated Testing Based on Java Predicates. In
ISSTA, pages 123–133, 2002.

[12] S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan.
Line-up: A Complete and Automatic Linearizability
Checker. In PLDI, pages 330–340, 2010.

[13] A. Carzaniga, A. Goffi, A. Gorla, A. Mattavelli, and
M. Pezzè. Cross-checking Oracles from Intrinsic
Software Redundancy. In ICSE, pages 931–942, 2014.

[14] C. Csallner and Y. Smaragdakis. Jcrasher: An
Automatic Robustness Tester for Java. Software Pract
and Exper, 34(11):1025–1050, 2004.

[15] A. Farzan, A. Holzer, N. Razavi, and H. Veith.
Con2colic Testing. In FSE, pages 37–47, 2013.

[16] C. Flanagan and S. N. Freund. Atomizer: A Dynamic
Atomicity Checker for Multithreaded Programs. In
POPL, pages 256–267, 2004.

[17] C. Flanagan and S. N. Freund. Fasttrack: Efficient
and Precise Dynamic Race Detection. In PLDI, pages
121–133, 2009.

[18] G. Fraser and A. Arcuri. Whole Test Suite Generation.
IEEE TSE, 39(2):276–291, 2013.

[19] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and
F. Padberg. Does Automated White-box Test
Generation Really Help Software Testers? In ISSTA,
pages 291–301, 2013.

[20] G. Fraser and F. Wotawa. Redundancy Based
Test-suite Reduction. In FASE, pages 291–305, 2007.

[21] G. Fraser and A. Arcuri. Evosuite: Automatic Test
Suite Generation for Object-oriented Software. In
FSE, pages 416–419, 2011.

[22] P. Godefroid, N. Klarlund, and K. Sen. DART:
Directed Automated Random Testing. In PLDI, pages
213–223, 2005.

[23] B. Göetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes,
and D. Lea. Java Concurrency in Practice.
Addison-Wesley, 2006.

[24] M. Harder, J. Mellen, and M. D. Ernst. Improving
Test Suites via Operational Abstraction. In ICSE,
pages 60–71, 2003.

[25] S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold.
Testing Concurrent Programs to Achieve High
Synchronization Coverage. In ISSTA, pages , 2012.

[26] J. Huang and C. Zhang. Persuasive Prediction of
Concurrency Access Anomalies. In ISSTA, pages
144–154, 2011.

[27] J. C. King. Symbolic Execution and Program Testing.
CACM, 19(7):385–394, 1976.

[28] Z. Lai, S. C. Cheung, and W. K. Chan. Detecting
Atomic-set Serializability Violations in Multithreaded
Programs Through Active Randomized Testing. In
ICSE, pages 235–244, 2010.

[29] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai.
Have Things Changed Now?: An Empirical Study of
Bug Characteristics in Modern Open Source Software.
In ASID, pages 25–33, 2006.

[30] Y. Lin and D. Dig. Check-then-act Misuse of Java
Concurrent Collections. In ICST, pages 164–173, 2013.

[31] P. Liu, J. Dolby, and C. Zhang. Finding Incorrect
Compositions of Atomicity. In FSE, pages 158–168,
2013.

[32] S. Lu, W. Jiang, and Y. Zhou. A Study of Interleaving
Coverage Criteria. In FSE, pages 533–536, 2007.

[33] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
Mistakes: A Comprehensive Study on Real World
Concurrency Bug Characteristics. In ASPLOS, pages
329–339, 2008.

[34] S. Lu, S. Park, and Y. Zhou. Finding
Atomicity-violation Bugs Through Unserializable
Interleaving Testing. IEEE TSE, 38(4):844–860, 2012.

[35] R. Majumdar and K. Sen. Hybrid Concolic Testing. In
ICSE, pages 416–426, 2007.

[36] D. Marinov and S. Khurshid. Testera: A Novel
Framework for Automated Testing of Java Programs.
In ASE, pages 22–31, 2001.

[37] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and Reproducing
Heisenbugs in Concurrent Programs. In OSDI, pages
267–280, 2008.

[38] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and
D. Marinov. BALLERINA: Automatic Generation
and Clustering of Efficient Random Unit Tests for
Multithreaded Code. In ICSE, pages 727–737, 2012.

[39] S. Okur and D. Dig. How Do Developers Use Parallel
Libraries? In FSE, pages 54:1–54:11, 2012.

http://asm.objectweb.org/
https://issues.apache.org/jira/browse/LANG-481
 http://sourceforge.net/p/jfreechart/bugs/278/
https://bugs.openjdk.java.net/browse/JDK-4334376
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4791557
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4791557
https://code.google.com/p/guava-libraries/issues/detail?id=339
https://code.google.com/p/guava-libraries/issues/detail?id=339
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4779253
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4779253
http://thread-safe.org/download
http://xstream.codehaus.org/

[40] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball.
Feedback-directed Random Test Generation. In ICSE,
pages 75–84, 2007.

[41] S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing
Atomicity Violation Bugs from Their Hiding Places.
In ASPLOS, pages 25–36, 2009.

[42] F. Pastore, L. Mariani, and G. Fraser. Crowdoracles:
Can the Crowd Solve the Oracle Problem? In ICST,
pages 342–351, 2013.

[43] M. Pradel and T. R. Gross. Fully Automatic and
Precise Detection of Thread Safety Violations. In
PLDI, pages 521–530, 2012.

[44] G. Ramalingam. Context-sensitive
Synchronization-sensitive Analysis Is Undecidable.
TOPLAS, 22(2):416–430, 2000.

[45] N. Razavi, F. Ivančić, V. Kahlon, and A. Gupta.
Concurrent Test Generation Using Concolic
Multi-trace Analysis. In APLAS, pages 239–255, 2012.

[46] M. Samak and M. K. Ramanathan. Multithreaded
Test Synthesis for Deadlock Detection. In OOPSLA,
pages 473–489, 2014.

[47] M. Samak and M. K. Ramanathan. Omen+: A
Precise Dynamic Deadlock Detector for Multithreaded
Java Libraries. In FSE, pages 735–738, 2014.

[48] M. Samak and M. K. Ramanathan. Omen: A Tool for
Synthesizing Tests for Deadlock Detection. In
SPLASH, pages 37–38, 2014.

[49] M. Samak, M. K. Ramanathan, and S. Jagannathan.
Synthesizing Racy Tests. In PLDI, pages 175–185,
2015.

[50] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A Dynamic Data Race Detector
for Multithreaded Programs. ACM Trans. Comput.
Syst., 15(4):391–411, 1997.

[51] K. Sen and G. Agha. Cute and Jcute: Concolic Unit
Testing and Explicit Path Model-checking Tools. In
CAV, pages 419–423, 2006.

[52] K. Sen and G. Agha. A Race-detection and Flipping
Algorithm for Automated Testing of Multi-threaded
Programs. In HVC, pages 166–182, 2006.

[53] K. Sen, G. Roşu, and G. Agha. Detecting Errors in
Multithreaded Programs by Generalized Predictive
Analysis of Executions. In FMOODS, pages 211–226,
2005.

[54] E. Sherman, M. B. Dwyer, and S. Elbaum.
Saturation-based Testing of Concurrent Programs. In
FSE, pages 53–62, 2009.

[55] F. Sorrentino, A. Farzan, and P. Madhusudan.
PENELOPE: Weaving Threads to Expose Atomicity
violations. In FSE, pages 37–46, 2010.

[56] S. Steenbuck and G. Fraser. Generating Unit Tests for
Concurrent Classes. In ICST, pages 144–153, 2013.

[57] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai.
Bug Characteristics in Open Source Software. ESE,
19(6):1665–1705, 2014.

[58] S. Tasiran, M. E. Keremouglu, and K. Mucslu.
Location Pairs: A Test Coverage Metric for
Shared-memory Concurrent Programs. ESE,
17(3):129–165, 2012.

[59] N. Tillmann and J. De Halleux. Pex–white Box Test
Generation for Net. In TAP, pages 134–153, 2008.

[60] P. Tonella. Evolutionary Testing of Classes. In ISSTA,
pages 119–128, 2004.

[61] M. Vaziri, F. Tip, and J. Dolby. Associating
Synchronization Constraints with Data in an
Object-oriented Language. In POPL, pages 334–345,
2006.

[62] W. Visser, C. S. Păsăreanu, and R. Pelánek. Test
Input Generation for Java Containers Using State
Matching. In ISSTA, pages 37–48, 2006.

[63] C. Wang and M. Ganai. Predicting Concurrency
Failures in the Generalized Execution Traces of x86
Executables. In RV, pages 4–18, 2012.

[64] C. Wang, M. Said, and A. Gupta. Coverage Guided
Systematic Concurrency Testing. In ICSE, pages
221–230, 2011.

[65] T. Xie, D. Marinov, and D. Notkin. Rostra: A
Framework for Detecting Redundant Object-oriented
Unit Tests. In ASE, pages 196–205, 2004.

[66] C.-S. D. Yang, A. L. Souter, and L. L. Pollock.
All-du-path Coverage for Parallel Programs. In ISSTA,
pages 153-162, 1998.

[67] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam.
Maple: A Coverage-driven Testing Tool for
Multithreaded Programs. In OOPSLA, pages 485–502,
2012.

[68] T. Yu, W. Srisa-an, and G. Rothermel. An Empirical
Comparison of the Fault-detection Capabilities of
Internal Oracles. In ISSRE, pages 11–20, 2013.

