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Abstract. Learning features from raw data is an important topic in
machine learning. This paper presents Genetic Program Feature Learner
(GPFL), a novel generative GP feature learner for 2D images. GPFL
executes multiple GP runs, each run generates a model that focuses on
a particular high-level feature of the training images. Then, it combines
the models generated by each run into a function that reconstructs the
observed images. As a sanity check, we evaluated GPFL on the popular
MNIST dataset of handwritten digits, and compared it with the convo-
lutional neural network LeNet5. Our evaluation results show that when
considering smaller training sets, GPFL achieves comparable/slightly-
better classification accuracy than LeNet5. However, GPFL drastically
outperforms LeNet5 when considering noisy images as test sets.

Keywords: Genetic Programming · Semantic GP · Feature learning, ·
Image classification

1 Introduction

Feature learning [49] is an important topic in machine learning, as it powers
many classification and knowledge discovery techniques. Such techniques need
numeric representations of raw data (i.e., features) that are computationally
convenient to process [49]. Feature learning becomes a key task when dealing
with raw high-dimensional data (e.g., 2D images, videos and sounds) [49], which
lack well-defined features [16, 23, 26]. Manually identifying features from high-
dimensional data is often infeasible because it requires expensive human-labor
and domain knowledge [1, 36]. As such, automatic feature learning techniques
have gained much attention [30,49].

Most recent automatic feature learners are implemented as (multi-layer)
neural networks [49]. However, in principle, an automatic feature learner based
on GP would entail two important advantages: (i) GP often does not need large
training sets to learn competitive models [33]; and (ii) GP is generally robust
to noisy data [27]. Recently, we have seen the first GP feature learners for 2D
images [9, 25, 38]. These approaches emulate the behavior of a neural-network
autoencoder [18], with multiple GP-evolved models that reconstruct (encode and
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decode) the pixels of an image [38]. Evolving a dedicated model to reconstruct a
single pixel has two main issues: (i) it is computationally expensive, especially
with high-resolution images; and (ii) it ignores the (important) spatial relations
of pixels, as it evolves each model independently from the ones of adjacent pixels.

This paper presents a GP Feature Learner, called GPFL3, to learn high-
level features from 2D images. There are two main differences between GPFL
and the previous GP feature learners [9, 25, 38]. First, GPFL does not evolve
as many models as the pixels in the image, but one model for each high-level
feature of the image. Second, GPFL learns high-level features leveraging the
spatial relations of pixels, as it uses the pixel coordinates as inputs of the models.

In a nutshell, GPFL takes in input a training dataset of images and outputs
a model represented as a function fgp that, given a 2D coordinate (c1, c2),
returns a pixel value p (i.e., fgp(c1, c2) = p). As such, GPFL is a generative
and unsupervised feature learner. Under the hood, GPFL follows the dynamic
target approach SGP-DT [41,42] that executes multiple GP runs (called external
iterations). Each external iteration evolves a population of models driven by a
dynamic “target” that changes at each iteration. Each target is defined as the
residual errors of the reconstructed images between the previous and current
iterations. As such, the next iteration will focus on the characteristics of the
images that the previous iteration did not approximated well. Each external
iteration outputs a model (called partial model) that focuses on a specific high-
level feature of the images. When all external iterations terminate, GPFL creates
the final model fgp by combining with linear scaling [17,43] all the partial models.

As a sanity check, we evaluated GPFL on the popular MNIST dataset of 2D
images representing handwritten digits [6]. We evaluated how well the models
trained by GPFL capture the relevant high-level features of the MNIST images.
Towards this goal, we implemented a classifier that uses the reconstruction error
of fgp to classify the MNIST digits. We compared the GPFL-based classifier
with LeNet5 [19,21], the well-known DNN specific for MNIST.

When trained with smaller training sets and evaluated with all 10,000 images
in the MNIST test set, GPFL-based classifier achieves a median classification
accuracy that is comparable or better than LeNet5. For example, when trained
with a dataset composed of ten images for each digit, the GPFL-based classifier
has a median classification accuracy of 82.81%, while LeNet5 of 80.67%.

We also evaluated the noise robustness of GPFL by corrupting the 10,000
images of the test set with five noise levels (of salt type). GPFL always outper-
forms LeNet5 for all five levels (with a classification accuracy improvement up
to +40.85%). These are important results, considering that GPFL is one of the
first genetic programming attempts to learn high-level features from 2D images.

The remainder of this paper is structured as follows. Section 2 discusses the
related work. Section 3 describes the GPFL approach. Section 4 presents our
experiments. Section 5 concludes the paper.

3 We presented a preliminary version of this work in a poster paper [40].
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2 Background and Related Work

GPFL aims to automatically learn high-level features from 2D images. Following
previous work, we use low-level features to refer to the pixel values, and high-level
features to refer to conglomerations of related low-level features.

Deep Neural Networks (DNNs) [20] are often used to learn high-level features
from high-dimensional data with great success [2, 6]. Because developing DNNs
requires labor-intensive architecture engineering, researchers have investigated
GP approaches (e.g., NEAT techniques [3–5, 8, 10, 11, 34, 35]) to automate the
architecture engineering activity of DNNs. These techniques show promising but
still limited results, as finding an optimized DNN architecture largely remains a
human activity. Instead of leveraging GP to explore the space of possible DNN
architectures, GPFL is a GP feature learner detached from DNNs.

Most GP feature learners for 2D images discover high-level features using
hand-crafted or domain-specific features as building blocks [1, 16, 23, 26, 36].
For example, Speeded Up Robust Features (SURF) [7], Histogram of Oriented
Gradients (HoG) [31], Gist features [32] and Scale-Invariant Feature Transform
(SIFT) [50]. Differently, GPFL learns high-level features from low-level ones (i.e.,
pixel values) without requiring human-crafted or domain-specific features.

At the best of our knowledge, there are only three attempts of GP feature
learners for 2D images that discover high-level features directly from low-level
ones [25, 29, 38]. Such attempts, following the success of NN-based autoen-
coders [18, 28, 45], use GP to emulate the classical autoencoder architecture
with encoder→code→decoder. The encoder component learns a compact represen-
tation (called code) of the low-level features in input. The decoder component uses
the learned high-level features (i.e., the code) to reconstruct an approximation of
the input. We now discuss these three attempts.

Rodriguez-Coayahuitl et al. proposed Structured Layered GP (SLGP) [37,38],
which evolves two distinct populations. One population encodes the pixels in
input and outputs the code (i.e, latent space). The other population decodes the
code into the reconstructed image. SLGP generates as many encoding GP trees
as the size of code and as many decoding GP trees as the number of pixels.

McDermott proposed an autoencoder GP similar to SLGP [29]. Differently
from SLGP, it relies on two multi-value linear GP components [9], one for the
encoder and one for the decoder.

Lensen et al. proposed GPMaL [24], GP technique for manifold learning [46],
which relates to both SLGP and McDermott’s approach. Manifold learning
aims to reduce the dimensions of raw data. This is similar, in principle, to the
encoder component of most autoencoders, which transforms the input into a
lower dimensional code (latent space). GPMaL resembles the encoder of SLGP,
as it also uses as many GP trees as the number of dimensions of the latent space
(the code size in SLGP). A later version of GPMaL [25] relies on a Pareto front
technique to dynamically select the number of dimensions of the latent space.

Similarly to GPFL, these three techniques are generative approaches that
reconstruct 2D images. However, GPFL differs substantially. First, they simulate
the classical NN autoencoder architecture with two distinct components: encoder
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and decoder. Conversely, GPFL does not follow the NN autoencoder architec-
ture, and thus it avoids altogether the issue of aligning the two components.
Second, previous GP feature learners evolve a GP model for each pixel, which
is computationally expensive when dealing with high-resolution images, and
does not directly consider the spatial relations among pixels. Notably, GPFL
is the first GP feature learner that directly relies on spatial information (pixel
coordinates). Third, they require that the number of high-level features (i.e.,
code size) is chosen in advance. Instead, one can run GPFL with an arbitrary
number of external iterations (i.e., number of high-level features) and stop at the
desired reconstructed error. Moreover, one can re-run GPFL to obtain additional
high-level features without discarding the previously learned features.

Although the three previous attempts have been evaluated with MNIST,
GPFL is the only one known to classify all ten MNIST digits.

3 Genetic Programming Feature Learning (GPFL)

Most high-dimensional data found in nature exhibit correlations among low-level
features expressed by the extra dimensions. For 2D images, such correlations are
the spatial relations among pixels (being the space the extra dimension). The
spatial position of pixels can be extremely useful to express relevant high-level
features, as it characterizes the intrinsic properties of the image itself: Two images
with pixels of identical values but of different spatial positions can represent two
radically different concepts. Indeed, humans recognize patterns and objects by
relying heavily on spatial relations [22].

This paper presents GPFL, a GP feature learner for 2D images that relies on
both the pixels values and their spatial positions. GPFL outputs a function fgp
(a GP-evolved model) that, given a 2D coordinate (c1, c2), returns a pixel value
p (i.e., fgp(c1, c2) = p). As such, given all coordinates, fgp reconstructs an image.

Each model (GP individual) is a mathematical (tree-like) expression, with

(i) non-terminal symbols: algebraic operations (+,−, ·, the protected division,
Min and Max ) and trigonometric operations (sine and cosine)

(ii) terminal symbols: variables (the coordinates c1 and c2) and decimal con-
stants (ERC between -1 and 1).

This dictionary of symbols allows GPFL to evolve continuous functions with
the coordinates c1 and c2 as independent variables. As such, the produced models
can encode spatial relations among pixels. This is because the continuity property
entails relations on adjacent low-level features (i.e., pixels). Because the protected
division, Min and Max symbols introduce discontinuity, the models can also
encode spatial relations that are difficult to model in a single continuous function.
For instance, by combining multiple (continuous) functions.

The key challenge of using spatial information for feature learning is their
variability among images that represent the same concept. For example, when
classifying handwritten digits, “1” or “I” are two popular styles for writing
the number one. These styles have different, albeit similar, spatial relations. A
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Algorithm 1: GPFL implements the dynamic-target framework (SGP-
DT [41]), ?? marks the lines representing the novel aspects of GPFL

input : ŷ[c1][c2] ∈ Ŷ: training 2D images (H×W matrices of pixels)
number of external (Next) and internal (Nint) iterations

output : fgp : final regression model
1 Function GPFL
22** target← Ŷ
3 partialModels← [· · · ]
4 for ext-iter from 1 to Next do
5 P ← get-random-initial-population
6 for int-iter from 1 to Nint do
7 for each I ∈ P do
88** Ils ←compute-fitness-and-ls(target, I) // see Algorithm 2

9 P ′ ← ∅
10 add elite(P) to P ′
11 while P ′ is not full do
12 Ils ← tournament-selection(P)
13 add mutate(Ils) to P ′

14 P ← P ′

15 I?ls ← get-best-individual(P) // partial model
16 add I?ls to partialModels

/* the new target is computed as the residual errors of each image */
1717** for each i from 1 to size(target) do
1818** for each c1 from 1 to H do
1919** for each c2 from 1 to W do
2020** target[i][c1][c2]← I?ls(c1, c2)− target[i][c1][c2]

2121** return fgp ←
∑
I?ls∈partialModels I?ls // linear combination of partial models

single non-parametric function cannot output different pixel values for the same
coordinate, and thus cannot encode both styles. GPFL addresses the challenge
by parameterizing fgp, so that changing the parameter values reproduces the
observed variability. GPFL defines such parameters as the coefficients of a linear
combination of multiple GP-evolved models (called partial models), each focusing
on a specific high-level feature of the images.

Algorithm 1 describes GPFL’s approach. It has three inputs: (i) the training
images (Ŷ); (ii) the number of external iterations (Next) (i.e, the number of
partial models); and (iii) the number of internal iterations (Nint) (i.e, the number
of generations that GPFL uses to optimize each partial model). GPFL relies on
linear scaling [17] to construct fgp as a linear combination of the partial models.

To generate the partial models, GPFL implements the dynamic-target ap-
proach SGP-DT [41] that evolves multiple models driven by a target that changes
at each external iteration. SGP-DT initializes the target with the training set
(line 2, Algorithm 1). At each external iteration (lines 4–20), SGP-DT evolves
a population of models (P) to identify one (partial model I?ls line 15) that best
approximates the current target. SGP-DT evolves P using a variant of the
classical GP algorithm (lines 6–13) that does not use any form of crossover [41].
Ruberto et al. have shown that such a variant is effective with the dynamic-target
approach [41]. At each new external iteration, SGP-DT computes the new target
as the residuals errors of the current target and the best model I?ls (lines 17–20).
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Algorithm 2: GPFL’s fitness function
input : target : set of 2D images and I: individual
output : Ils encoded with fitness score and linear scaling coefficients

22 Function compute-fitness-and-ls
23 scores← [· · · ] // vector of score for each image in target
24 for each ŷ in target do
25 yp ← [· · · ][· · · ] // predicted image
26 for each c1 from 1 to H do
27 for each c2 from 1 to W do
28 yp[c1][c2]← I(c1, c2)

29 〈a, b〉 ← compute-and-store-ls-coefficients(yp, ŷ)
30 Ils ← a+ b · I // linear scaling
31 scores[ŷ]← compute-mean-squared-error(Ils, ŷ)

32 fitness-score(Ils)←
∑

scores[i]
size(scores)

// arithmetic mean of the scores

33 return Ils

Ruberto et al. defined the dynamic-target framework SGP-DT for the nu-
merical symbolic regression domain [41]. We now describe how GPFL adapts
it for learning high-level features from 2D images. We mark with ?? the lines of
Algorithm 1 that correspond to the novel aspects of GPFL. First and foremost,
GPFL proposes a novel fitness function, which is specific to our problem at hand
(Function compute-fitness-and-ls, lines 22-33, Algorithm 2). Second, GPFL
generates the new target by computing the error residuals by differencing images
(lines 17-20, Algorithm 1). Third, GPFL constructs the final model using a linear
combination. Differently, SGP-DT uses a validation set, which does not apply
in our case. We now describe in details these three novel aspects of GPFL.
Fitness function. GPFL invokes Function compute-fitness-and-ls (Algo-
rithm 2) for each individual in the current population (line 8, Algorithm 1). The
function takes in input (i) the current target, which are the 2D residual images
at the current iteration; and (ii) the individual I. Line 33 of Algorithm 2 returns
Ils, the individual I with its fitness score and linear scaling coefficients (a and b).
Note that a and b are different for each image in target. Intuitively, the fitness
score captures how well an individual approximates the current target.

The function starts by initializing at empty the vector of scores (line 23 of
Algorithm 2), which will populate with the prediction errors of Ils, for each
image ŷ in target. Given an image ŷ, GPFL generates the predicted image
yp by computing the function fgp(c1, c2) prescribed by the individual I for all
the H×W coordinates c1 and c2 in the image ŷ. GPFL assigns the results of
fgp(c1, c2) (predicted value) to yp[c1, c2] (line 28, Algorithm 2). Given yp and ŷ,
GPFL computes the coefficient a and b with the linear scaling technique [17]
(line 29, Algorithm 2). Following Keijzer [17], we compute the linear scaling of
an individual I as follows (where ŷ is the arithmetic mean of ŷ)4

Ils = a+ b · I (1)

where a = ŷ − b · yp and b =

∑n
i=1[(ŷi − ŷ) · (ypi − yp)]∑n

i=1[(ypi − yp)2]
(2)

4 The cost of computing the linear scaling coefficients is O(| Ŷ | · | P |).
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Following classical GP approaches, we rely on the Mean Squared Error (MSE)
between yp and ŷ to compute the scores (line 31, Algorithm 2). Because yp and ŷ
are images, MSE measures the average squared difference between the predicted
value yp[c1, c2] and the actual value ŷ[c1, c2], for each coordinate (c1, c2). Being a
quadratic function, MSE gives more weight to the pixels with a greater difference.
As such, during the first external iterations, GPFL focuses on those elements of
the images that lead to greater errors.

After the function analyzes all residual images in target, it computes the
fitness score of Ils as the arithmetic mean of the scores (line 32, Algorithm 2).
The rationale of choosing the arithmetic mean is to consider equally important all
the images in target. The fitness score is a number from zero to infinite. Because
it represents an error, the lower the score the fitter the individual.
Constructing the new target. To construct the new target, GPFL scans all
the pixel coordinates and computes the difference between the current pixel
value and the one predicted by the best model I?ls (lines 17–20, Algorithm 1).
As such, the next iteration will focus on the characteristics of the images that
the previous iteration did not approximate well. Note that the linear scaling
coefficients are different for every image and were previously computed by the
Function compute-fitness-and-ls.
Constructing the final model. GPFL constructs the final model with a linear
combination of all the partial models (line 21, Algorithm 1). Intuitively, by
combining all partial models we are summing all the estimates of the residuals,
and thus obtaining a function fgp that well approximates the training images in
input. Notably, fgp is a parametric function with a and b as parameters.

4 Experiments

This section describes a series of experiments to evaluate how well the models
trained by GPFL capture the most relevant high-level features of 2D images.
Because given enough external iterations GPFL can achieve an arbitrary lower
reconstruction error, we opted to evaluate GPFL with classification accuracy
instead. In fact, linear scaling guarantees that the reconstruction error (i.e.,
RMSE) monotonically decreases [17]. This happens because GPFL re-computes
the linear scaling coefficients when reconstructing each test image.

We built a naïve classifier that relies on GPFL for classifying MNIST digits
(Algorithm 3), and compared with the DNN LeNet5 [19, 21]5. We experimented
with smaller MNIST training sets and with noisy MNIST test sets to evaluate
the generalizabilty and robustness of the models, respectively. This is a common
experimental setup [13] for the few-shot learning problem [12].
Dataset. The MNIST database of handwritten digits [48] comprises a training
set of 60,000 examples, and a test set of 10,000 examples. Each example is a
grayscale numerical bitmap image of 28x28 pixels representing a handwritten
5 When comparing the classification accuracy of GPFL and LeNet5, we computed
the p-values with the non-parametric pairwise Wilcoxon rank-sum test [15].
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Algorithm 3: GPFL-based MNIST naïve classifier
input : Ŷ MNIST training set, S ensembles size
output : ensembles for each digit

1 Function trainer
2 for each digit from 0 to 9 do
3 for each i from 1 to S do
4 ensembles[digit ][i]←GPFL (Ŷ[digit], Next=100, Nint=50)

5 return ensembles

input : ensembles for each digit returned by the trainer, ŷ image to classify
output : predicted digit of ŷ

6 Function predictor
7 for each digit from 0 to 9 do
8 ŷrc ← [· · · ][· · · ] // reconstructed image initialiated at empty
9 for each i from 1 to S do

10 ensembles[digit ][i]ls←compute-ls(ensembles[digit][i], ŷ)
11 ŷrc ← ŷrc+ reconstruction(ensembles[digit ][i]ls)
12 average-image← ŷrc/N // average of each pixel
13 error [digit ] ←MSE(ŷ, average-image) // mean square error

14 return digit ← argmin
digit∈{0···9}

{error[digit] }

digit from 0 to 9. MNIST is widely-used as a standard benchmark in the ML
community [6, 47]. Even now, MNIST is often the first dataset that researchers
use to validate their algorithms [2–5, 8, 11]. From the MNIST training set of
60,000 images, we constructed three variants of smaller size, with five (MNIST-5),
ten (MNIST-10), and one hundred (MNIST-100) images for each digit. Because
there are ten digits (0 to 9), the three variants contain 50, 100 and 1,000 examples,
respectively. We constructed such variants by randomly sampling the MNIST
training set. To avoid selection biases, we repeated the sampling process 30 times
for each of the three variants, obtaining 90 datasets in total. We stored them on
disk to train GPFL and LeNet5 with exactly the same datasets.
A GPFL-based classifier. To evaluate how well GPFL learns relevant high-
level features that characterize the images in input, we constructed a naïve
classifier (Algorithm 3) that classifies unseen MNSIT digits relying on the
models that GPFL produces. The classifier splits the training images Ŷ into
ten partitions (Ŷ[digit]) according to their digit label. Then, it uses GPFL to
train multiple models (called ensemble) for each of the partitions. We use the
ensemble method to mitigate the stochasticity of GP, which can lead to models of
arbitrary performance. Note that, although GPFL is unsupervised, the classifier
is supervised because it splits the training set according to the digit labels.

The naïve classifier has two components: the trainer and the predictor
(see Algorithm 3). The predictor takes in input the test image to classify and
the list of ensembles precomputed by the trainer. To predict the digit of the test
image, the predictor reconstructs the image multiple times, one for each ensemble.
Internally, the predictor obtains each reconstructed image by averaging the pixels
outputted by the models. Then, it returns the digit corresponding to the ensemble
that yielded the lowest reconstruction error. When reconstructing the test image
ŷ, we recompute the linear scaling parameters that best approximate ŷ.
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Table 1: Classification accuracy of GPFL and LeNet5 on 10,000 test images
# external
iter. (Next)

ensembles
size (S)

GPFL median accuracy % learning
rate

LeNet5 median accuracy %
MNIST-5 MNIST-10 MNIST-100 MNIST-5 MNIST-10 MNIST-100

20 50 73.78% 81.21% 90.16% 0.1 74.48% 80.67% 92.67%
30 50 74.18% 82.53% 91.26% 0.01 73.88% 80.58% 92.76%
40 50 74.49% 82.81% 91.66% 0.001 73.52% 79.92% 92.28%
60 50 73.82% 82.70% 91.84% 0.0001 73.90% 79.48% 91.49%

100 50 73.27% 82.19% 91.26%
40 1 68.36% 76.32% 85.07%
40 30 74.33% 82.63% 91.59%

We decided to rely on a naïve classifier (as opposed to more sophisticated
approaches, e.g., SVM and Random forest) to isolate our main contribution. So
that the effectiveness of the classification (Algorithm 3) can be mainly attributed
to the quality of the high-level features that GPFL identified.
GPFL configuration. Following the dynamic target framework SGP-DT [41],
we configured GPFL as follows. Fifty internal iterations (Nint). One hundred the
population size. The ramped-half-and-half initialization generates trees with a
depth that ranges from 1 to 4 (line 5, Algorithm 1). The probability of mutation
is 100%, and the maximum depth of the subtrees generated by the mutation
operators is five. The probability of a sub-tree mutation happening at the leaf
level is 70%. We set no limits on the number of nodes and on the depth of the
trees. We set size of the tournament selection to two, and the elitism size to one.

We ran GPFL with different combinations of Next (number of external
iterations) and S (the ensembles size) and choose the best ones. Table 1 gives the
median accuracy of GPFL on the 30 datasets of each variant, using the original
test set of 10,000 images. The different combinations of Next and S give similar
accuracy results, except for the combination Next = 40 and S = 1, which has
the lowest performance. This confirms the importance of an ensembles approach.
Table 1 marks in bold the highest median accuracy for each of the datasets. In
our experiments, we will use the corresponding values of Next and S.
LeNet5 configuration. We compared GPFL with the Convolutional Neural
Network (CNN) LeNet5 [19, 21], the most used baseline for MNIST [13, 14].
We implemented LeNet5 with the TensorFlow framework. To be sure that
our implementation was correct, we confirmed that when trained with all the
60,000 training images and validated with the 10,000 test images, our implemen-
tation achieves the advertised classification accuracy of 99% [19, 21]. We released
our datasets, models and implementation and we welcome external validation [39].

A key hyper-parameter of CNNs is the learning rate that controls how much
the weights are adjusted with respect to the loss gradient [20]. The lower the
value, the slower the training. The original LeNet5 uses 0.1 as learning rate,
which might be inadequate in our case since we have smaller training sets. Table 1
shows the median accuracy of LeNet5 on our datasets with different learning
rates (0.1, 0.01, 0.001, and 0.0001), using the original test set of 10,000 images.
Table 1 marks in bold the highest median accuracy for each of the three datasets.
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Fig. 1: GPFL and LeNet5 classification accuracy (best configurations)

Classification accuracy on 10,000 test images. Figure 1 shows the box-plot
of the classification accuracy distributions of GPFL and LeNet5 with their
best configurations (see Table 1). On MNIST-5, GPFL and LeNet5 achieve a
similar median accuracy of ∼74.50%, but GPFL exhibits less variance. This is the
only non-statistically significant result (p-value 0.597). On MNIST-10, GPFL
outperforms LeNet5 (p-value 5.14·10−6) with a median accuracy of 82.81% and
80.67%, respectively. On MNIST-100, GPFL underperforms LeNet5 (p-value
1.17·10−5) with a median accuracy of 91.84% and 92.76%, respectively.

As expected, with the increasing of the training size, both techniques attain
better classification accuracy. Moreover, because smaller datasets might lack rep-
resentative training cases, the variance increases when the training size decreases.
Despite that the architecture of LeNet5 was specifically designed for the MNIST
dataset [19,21], GPFL’s results are comparable with LeNet5 on MNIST-5, and
better than LeNet5 on MNIST-10. This demonstrates that, given small training
sets, GPFL learns the relevant high-level features of MNIST images. This is an
important result considering that GPFL’s architecture is agnostic to MNIST.

Classification accuracy on 10,000 noisy test images. We added random
noise to the MNIST test set of 10,000 images to compare the noise resilience of
GPFL and LeNet5. We considered five levels of salt noise L%: 5%, 10%, 20%,
30%, 40%. L specifies the percentage of randomly selected pixels in each image
whose values turn into 255 (white color). We decided to use salt noise because (in
our case) is more disruptive than the salt-and-pepper noise. In fact, the majority
of pixels in MNIST images are black (background color). The left matrix in
Figure 3 exemplifies the five noise levels (Columns 5%, 10%, 20%, 30%, 40%).

Table 2 shows the median accuracy for each combination of training sets
(MNIST-5, MNIST-10 and MNIST-100) and noise levels (5%, 10%, 20%, 30%,
40%). GPFL always outperforms LeNet5 for every combination of training
sets and noise levels. The comparison is always statistical significant (p-values
< 10−6), except when comparing GPFL and LeNet5 trained on MNIST-5 and
tested with noise level 5% (p-value 0.121). For noise level 5%, the difference
between the median accuracy of GPFL and LeNet5 ranges from +1.11% to
+2.84%. With the increasing of the noise level, the difference constantly grows.
For noise level 40%, the difference ranges from +30.51% to +40.85%.
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Table 2: Median accuracy with 10,000 noisy test images
salt noise
level %

MNIST-5 MNIST-10 MNIST-100
GPFL LeNet5 GPFL LeNet5 GPFL LeNet5

5 73.54% 72.43% 82.01% 79.18% 91.01% 89.75%
10 72.79% 68.95% 80.99% 75.56% 89.55% 80.49%
20 69.47% 56.78% 78.02% 63.45% 84.98% 57.37%
30 65.31% 41.10% 73.00% 49.26% 76.42% 37.72%
40 59.18% 28.67% 65.73% 35.99% 65.49% 24.64%

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Salt Noise Level (%)

M
e

d
ia

n
 

A
cc

u
ra

cy
 (

%
)

5 10 20 30 40

3
0

4
0

5
0

6
0

7
0

8
0

9
0

5 10 20 30 40

3
0

4
0

5
0

6
0

7
0

8
0

9
0

5 10 20 30 40

3
0

4
0

5
0

6
0

7
0

8
0

9
0

5 10 20 30 40

3
0

4
0

5
0

6
0

7
0

8
0

9
0

5 10 20 30 40

3
0

4
0

5
0

6
0

7
0

8
0

9
0

5 10 20 30 40

GPFL MNIST−100
GPFL MNIST−10
GPFL MNIST−5
LeNet5 MNIST−100
LeNet5 MNIST−10
LeNet5 MNIST−5

Fig. 2: Median classification accuracy degradation at the increasing of noise level.

Figure 2 plots the median accuracy trend at the noise level increases. For all
the three MNIST variants, LeNet5 accuracy degrades much faster than the one
of GPFL. Interestingly, GPFL always outperforms LeNet5.

For the lowest noise level (5%), LeNet5 trained on MNIST-100 (denoted by
LeNet5100) outperforms LeNet55 and LeNet510. This is an expected result,
because (in principle) the larger the training set the highest the classification
accuracy. However, the performance of LeNet5100 drastically decreases when
the noise level increases. For noise level 30% and 40%, LeNet5100 performs
significantly worse than LeNet55 and LeNet510. This result can be due to
LeNet5100 has “overfitted the clean data”: MNIST-100 has the largest size and
it requires more epochs to converge. As such, when the noise level increases, the
difference between the training and the test sets also increases. Intuitively, the
higher this difference, the lower the classification accuracy. Tsipras et al. had
similar conclusions when testing recent DNNs with noisy MNIST test sets [44].

The classification accuracy of GPFL100 degrades at the increasing of the
noise, but at a much slower pace. Only at noise level 40%, GPFL100 achieves a
similar classification accuracy with GPFL10. Analogously to LeNet5, GPFL100

has “overfitted the clean data”: MNIST-100 has the largest size and the highest
number of external iterations (Next = 60 vs 40 see Table 1).

Reconstruction results. The right matrix in Figure 3 shows ten images from
the MNIST test set and their GPFL’s reconstructions at various numbers of
external iterations (i.e., partial models). These are the results of GPFL trained
on MNIST-100 with ensembles size S = 50. Column Next shows the images
that GPFL reconstructs using the linear combination of the first Next partial
models, that is fgp(original)=

∑Next
i=1 partialModels[i]. With a low value of Next,

the reconstructed images focus on the macro characteristics of the images. For
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noise level (L%) and corresponding reconstruction (R)

orig. 5% R5% 10% R10% 20% R20% 30% R30% 40% R40%
number of external iterations (Next)

orig. 2 5 10 15 20 25 30 35 40 100

Fig. 3: Examples of reconstructed images of GPFL (with noise on the left).

instance, the images of Column Next = 2 show clouds of dust that resemble
the shape of the digits. When Next increases, the finer details gradually appear
because GPFL focuses on the residual errors of previous iterations. As Figure 3
exemplifies, the process looks like a progressive cleansing of the images.

The left matrix of Figure 3 shows ten images of the MNIST test set, their noisy
versions (L%) and their reconstructions (R) using GPFL100. The reconstructed
digits are recognizable even at noise level 40%. However, the reconstructions of
the digits two and zero show some artifacts originated by an uneven distribution
of the noise that GPFL interpreted as high-level features.
Size of the final solutions. The average size of fgp with Nint = 50 and Next =
40 is 4,587 (±4.6%), which is the number of nodes in the tree-like representation
of fgp. Recall that GPFL constructs fgp by assembling the partial models with
a linear combination. As such, after 50 internal iterations the resulting partial
models have an average size of 115 nodes (i.e., 4, 587/40 = 115).

5 Conclusion

This paper presented GPFL, a GP technique to learn high-level features from
2D images. Differently from previous GP feature learner attempts, GPFL does
not simulate the behavior of Deep Neural Networks (DNNs) whatsoever. Our
novel GP approach can handle more complex classification tasks than previous
attempts. Our experiments with MNIST show that GPFL has a competitive
edge with LeNet5 when considering small training sets and noisy test sets.

Note that, we are not claiming that GPFL is a valid alternative to DNNs
for learning high-level features from 2D images. In fact, MNIST is the (simple)
de-facto standard benchmark for a first sanity check only. Moreover, we compared
GPFL with LeNet5 that (although being specific to MNIST) is not the most
recent DNN-based feature learner. However, GPFL demonstrates that a GP
feature learner can lead to interesting results that are worth investigating further.
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