Semantic Matching of GUI Events for Test Reuse:
Are We There Yet?

Leonardo Mariani
University of Milano - Bicocca
Milan, Italy
leonardo.mariani@unimib.it

Mauro Pezze
USI Universita della Svizzera italiana
Lugano, Switzerland
SIT Schafthausen Institute of Technology
Schaffhausen, Switzerland
mauro.pezze@usi.ch

ABSTRACT

GUI testing is an important but expensive activity. Recently, re-
search on test reuse approaches for Android applications produced
interesting results. Test reuse approaches automatically migrate
human-designed GUI tests from a source app to a target app that
shares similar functionalities. They achieve this by exploiting se-
mantic similarity among textual information of GUI widgets. Se-
mantic matching of GUI events plays a crucial role in these ap-
proaches. In this paper, we present the first empirical study on
semantic matching of GUI events. Our study involves 253 config-
urations of the semantic matching, 337 unique queries, and 8,099
distinct GUI events. We report several key findings that indicate
how to improve semantic matching of test reuse approaches, pro-
pose SEMFINDER a novel semantic matching algorithm that outper-
forms existing solutions, and identify several interesting research
directions.

CCS CONCEPTS

- Software and its engineering — Software testing and de-
bugging; - Human-centered computing — Mobile phones; -
Computing methodologies — Natural language processing.

KEYWORDS

GUI testing, test reuse, mobile testing, Android applications, word
embedding, NLP

ACM Reference Format:

Leonardo Mariani, Ali Mohebbi, Mauro Pezzé, and Valerio Terragni. 2021.
Semantic Matching of GUI Events for Test Reuse: Are We There Yet?. In
Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA °21), July 11-17, 2021, Virtual, Denmark. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3460319.3464827

ISSTA °21, July 11-17, 2021, Virtual, Denmark

© 2021 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
'21), July 11-17, 2021, Virtual, Denmark, https://doi.org/10.1145/3460319.3464827.

Ali Mohebbi
USI Universita della Svizzera italiana
Lugano, Switzerland

ali.mohebbi@usi.ch

Valerio Terragni
The University of Auckland
Auckland, New Zealand
v.terragni@auckland.ac.nz

1 INTRODUCTION

Automatically generating test cases for GUI applications (GUI tests)
is an active research topic [3, 4, 26, 28, 31, 32, 49, 51, 64]. A GUI test
consists of (i) a sequence of events that interact with the GUI, and
(ii) one or more assertion oracles that predicate on the GUI state.
Current GUI test generators suffer from two main limitations [21].
First, they often generate semantically meaningless GUI tests that
miss many relevant behaviors of the application under test. As
such, they likely miss the GUI event sequences that properly ex-
ercise functionalities and reveal faults. Second, current GUI test
generators rely mostly on implicit oracles [56, 65, 94] that reveal
system crashes and exceptions, while missing many failures related
to the semantics of the app under test.

A recent research thread explores the reuse of GUI tests across
similar applications as an alternative way to automatically gener-
ate GUI tests [13, 15, 16, 45, 72, 75, 76]. GUI test reuse approaches
generate new tests for a target app by migrating tests designed
for a source app, an application that shares similar functionalities
with the target app. Figure 1 shows an example of test migration
between two ANDROID apps. When test migration succeeds, GUI
test reuse approaches (i) generate semantically meaningful GUI
tests that properly exercise the functionalities of the target app,
and (ii) adapt semantically relevant oracle assertions to the target
app [15, 45], thus addressing the main limitations of GUI test gen-
erators.

GUI test reuse approaches exploit the fact that many GUI appli-
cations share semantically similar functionalities [34, 54, 75]. Hu
et al. report that 196 (63.4%) of the top 309 non-game mobile apps
in the Google Play Store can be clustered into 15 groups each shar-
ing many common functionalities [34]. GUI test reuse is grounded
on the observation that different apps expose common functional-
ities via semantically similar GUI events [93]. As such, automatic
approaches try to migrate GUI tests across apps by mapping se-
mantically similar GUI events.

In this paper, we target test reuse for ANDROID applications. The
current test reuse approaches for ANDROID apps are ATM [15] and
CrAFTDROID [45]. These two approaches successfully migrate non-
trivial test cases, showcasing the potential of test reuse.

ATM and CRAFTDROID combine semantic matching of GUI events
with test generation. Semantic matching of GUI events identifies

https://doi.org/10.1145/3460319.3464827
https://doi.org/10.1145/3460319.3464827

ISSTA °21, July 11-17, 2021, Virtual, Denmark Leonardo Mariani, Ali Mohebbi, Mauro Pezzé, and Valerio Terragni

Iy T T Y T

€ frome o e € doines ¢ & ¢ Profile Q@
wom o oo Jom o} = exist(SM)
. e =fil ey =i —
B P — T - N
—— > ey =il B —— W '

S =Hill
(17 1 - |

e} = click -

L J— Emaill
es = fil

(A) Source test case t* for Rainbow app

T T T Y 1t PY
yelp= 1 f-”yelp.t L — Il yelp=é
el =fil, %=" G =
N [y y "= exi
@ yelps e, = fil ® av 0 —meX|st(SLVI)
We know just the place. @ @ — E i
t N - “ [All Notifications
Sign Up to Get the Full Experience! - - est = click —> eg = click oy s et s a1 [.
s
e} = click
oo 1 q‘ we rt y“ uito pé Reviews
ej ="click (Kot
G ‘SIGN UP WITH GOOGLE asdf 9 h J k ! 0 0
Cesevbuw O
o » o) : ® c

(B) Target test case t' for Yelp app

Figure 1: Test reuse example, the target test cases (B) is obtained by migrating the source test case (A)

semantically similar events across source and target apps, by apply- and a new corpus of documents (GooglePlay) based on 900,805 app

ing word embedding techniques [61] to the textual descriptors of descriptions.

events in the GUI widgets. Test generation exploits the similarities Our study discloses some relevant findings that both help iden-

identified with semantic matching to migrate GUI tests from the tify a better matching algorithm and offer important insights for

source to the target app. future research on test reuse. The most important findings are:
The overall effectiveness of test reuse strongly depends on the (i) the Semantic Matching Algorithm (Component 4 in Figure 2) is

effectiveness of semantic matching of GUI events. Indeed, the se- the component that impacts the most on the overall effectiveness

mantic matching is what drives the matching of the events between of semantic matching, and our proposed algorithm (SEMFINDER)

the source and the target test. Recently, Zhao et al. acknowledge the outperforms the algorithms of ATM and CRAFTDRoOID; (ii) sen-

importance of reusing GUI tests, and propose the FRUITER frame- tence level word embedding techniques (such as, Word Movers

work [93] to comparatively evaluate test reuse techniques. FRUITER distance [39]) perform much better than world level ones (such

compares test reuse techniques as a whole, but does not support as, WorD2VEC [60], used by both ATM and CRAFTDROID); (iii) con-

the evaluation of semantic matching in isolation. sidering certain widget attribute types as textual descriptors of GUI
In this paper, we present the first study on the semantic matching events can negatively affect the results; (iv) training word embed-

of GUI events for GUI test reuse/generation techniques. We iden- ding models with corpora of documents specific to the mobile app

tify four main components of the semantic matching, as illustrated domain lead to better results.

in Figure 2: Corpus of Documents (Component 1), Word Embed- In summary, this paper

ding (Component 2), Event Descriptor Extractor (Component 3), e develops the first framework to automatically evaluate the se-

and Semantic Matching Algorithm (Component 4). We then com- mantic matching of GUI events;

paratively evaluate the impact of different choices for each com- o identifies and extracts the core components of the semantic match-

ponent on the effectiveness of the semantic matching. Our study ing exploited in current test reuse approaches;

involves 253 configurations of these four components, 337 unique e evaluates 253 configurations of the semantic matching, and re-

semantic matching queries, and 8,099 distinct GUI events, obtained veals important insights;

from 30 ANDROID apps. Our configurations include the two config- e proposes a new semantic matching algorithm (SEMFINDER) and

urations of ATM and CRAFTDROID and many other configurations a corpus of documents that outperform existing ones;

that have not been investigated in the context of test reuse yet. e makes our framework implementation and all data publicly avail-

We also propose a new semantic matching algorithm (SEMFINDER) able, for future research in this area [53].

Semantic Matching of GUI Events for Test Reuse: Are We There Yet?

2 TEST REUSE ACROSS SIMILAR GUI APPS

This section gives the preliminaries of this paper and introduces
the GUI test reuse problem with an example.

Preliminaries: This paper targets Graphical User Interface (GUI)
applications for the ANDROID platform. A GUI is a forest of hier-
archical windows where only a window is active at any time [59].
Windows host widgets, which are atomic GUI elements character-
ized by attributes (such as, text and resource-id). At any time, the
active window has a state S that encompasses the attribute val-
ues of the displayed widgets. Some widgets expose user-actionable
events to let users interact with the app [25]. An event is an atomic
interaction on a widget. For instance, users can click on widgets of
type Button, or can fill widgets of type EditText. Following previous
test reuse approaches, we abstract the implemented widget type
and group events into two types: clickable and fillable. A GUI test t
is an ordered sequence of events (e, ..., e;) on widgets of the active
windows. A test execution induces a sequence of state transitions

So 4, S1 2, Sy ... L, Sn, where S;_1 and S; denote the states of
the active window before and after the execution of e;, respectively.

A GUI test can have one or more assertion oracles that check
the correctness of the state S; obtained after the execution of an
event e; [10]. For example, by checking for the absence or presence
of widgets with specific attributes values.

Test reuse approaches for GUI applications [93] automatically
migrate GUI tests (including oracles) across apps that share similar
functionalities. More formally, given two apps A® (source) and A’
(target), and a “source” test t* for AS, test reuse approaches generate
“target” test ¢! that tests A’ as ° tests AS. They create t* by searching
A for events that are semantically similar to events in t5.

Figure 1 shows an example of a migration from a test designed
for the source app Rainbow (A) to the target app Yelp (B). The two
tests verify the same feature, namely the creation of a new user.
The example is taken from the experiments of CRAFTDROID [45].

The migration process exploits a semantic similarity relation ~
to determine corresponding events of different apps. In the example
we have that ei ~ ei, e; ~ eé, eg ~ eé, ei ~ eé, eg ~ ei, and eg ~
eé. Current test reuse approaches define such a relation as a one-
to-one mapping between a source and a target event. The notion
of semantic similarity of GUI events largely influences the ability
of test reuse techniques to recognize corresponding events, thus

impacting on the whole migration process.

3 SEMANTIC MATCHING OF GUI EVENTS

Test reuse approaches need to match semantically similar GUI events
across apps. Such a semantic matching should capture the event se-
mantics, while abstracting the implementation details. Indeed, two
different apps might implement the same logical action with differ-
ent widgets (for instance, a button in one case and an image button
in another). Intuitively, test reuse approaches aim to generate tests
for the target app that maximize the number of semantically similar
events, possibly in the order prescribed by the source test.

Current approaches characterize the semantics of events by re-
lying on the textual attributes found in the GUL In particular, they
associate each event with its descriptor that encompasses the textual
attributes of the widget associated with the event. For instance, the
attributes text of events e3 and e! in Figure 1 are “join”and “sign up”,

ISSTA °21, July 11-17, 2021, Virtual, Denmark

SEMANTIC MATCHING OF GUI EVENTS

input output
s
: = £
source event escriptor of the s ti ¢t ¢
Eve.nt source event emantic < €0 €y >
Descriptor Matching 1S
Extractor Algorithm E* sorted

according to

(Component 3) (Component 4)

Et > B (D&, Di,..DL} the semantic
(el ef, ... el} descriptors of the score between
N s t
candidate target candidate target eventss . score e’ and e;
events txt® txt® | |(ext® txt®)

v

Corpus of Word
Documents [Embedding Embedding
(Component 1) (Component 2)

Figure 2: Logical workflow of the semantic matching

respectively. They then identify similar semantics by querying a
word embedding model that recognizes words or sentences that
express similar concepts. For instance, a word embedding model
would recognize that “join” and “sign up” are semantically similar.

Figure 2 shows the logical workflow among the core components
of the semantic matching of GUI events, which is shared by all test
reuse approaches that rely on word embedding. Given a source
event e® and a set of candidate target events Ef = {eé, ei, e eﬁl},
for each eventin e/ € E the semantic matching computes a similar-
ity score that expresses the degree of semantic similarity between
ef and e®. The semantic matching computes the score by aggre-
gating the scores returned by the word embedding model for each
pair of attributes in their descriptors (score(txt*, txt4') in Figure 2).
Different semantic matching algorithms use different aggregation
functions [15, 45]. Then, test reuse approaches can consider the
event(s) with the highest scores [45] and/or ignore all events that
are below a predefined threshold [15]. The semantic matching of
GUI events can thus be divided into four main components:

C1) Corpus of Documents that the approaches use to build a
word embedding model.

C2) Word Embedding that relies on the corpus of documents to
create a word embedding model that defines the semantic space of
words/sentences in the corpus.

C3) Event Descriptor Extractor that extracts information from a
source event e® and a set candidate target events Et = {eé, ei, e e,tz .
This component extracts the (textual) descriptors D = {{a;, v;)} of
each event, both dynamically from the GUI states and statically
from the GUI layout files. In a descriptor D, g; is an attribute type
(such as, text) and v; is its value (such as, “PREss ok”). Note that,
the textual value of an attribute might be a full sentence, as in this
example. For convenience of notation, we use D|[a;] to refer to the
value v; of the attribute a; of descriptor D.

C4) Semantic Matching Algorithm that returns a list of E? el-
ements sorted according to the similarity score computed from
the descriptor of the source event (D®) and the descriptors of the
candidate target events ({D?, D{, -+ DL}). Internally, the semantic
matching algorithm computes the similarity score between events
by aggregating the similarity scores of corresponding attributes
in the descriptors of the source and target events: sim(e®, el.t) =
sim(Ds,Dl?) = aggj{sim(Ds[aj],Dl.t[aj])}.

ISSTA °21, July 11-17, 2021, Virtual, Denmark

We now describe the component type implementations that we
consider in our study. We refer to a specific implementation of a
component as an instance. We include all the component instances
of ATM and CrAFTDROID and many other instances, which were not
investigated in the context of semantic matching of GUI events, yet.

3.1 Corpus of Documents

Our study considers three corpora of English documents:

Blog Authorship Corpus (Blogs) [79] that consists of 681,288
posts from 19,320 bloggers. This is a well-known corpus often used
by the NLP and information science communities [1, 80].

User Manuals of Android apps (Manuals) [15] that consists of
the user manuals of 500 ANDROID applications. This corpus was
built by the authors of ATM [15], who used it to train a WORD2VEC
word embedding model for running ATM.

Apps Descriptions (Google-play) that consists of the English
descriptions of 900,805 ANDROID apps in the Google Play Store. We
constructed this corpus by crawling the list of similar apps of each
crawled page. We used as seeds of the crawler the pages of the apps
returned by searching random words in the Google Play search bar.

The corpus of documents plays an important role in the semantic
matching. Indeed, the quality of a word embedding model depends
on the corpus of documents used to train the model.

There are two important characteristics that the corpus of docu-
ments should have to obtain an effective word embedding model.

First, the corpus should include as many distinct words as possi-
ble, as the model cannot compute similarity scores of words not rep-
resented in the vector space (Out-of-Vocabulary issue [18]). More-
over, the words contained in the corpus should be words that are
often found in the GUI of Android applications.

Second, the corpus should reflect the same word usage that mo-
bile apps commonly adopt. In fact, a word can have a different
meaning depending on the context of usage. Word embedding mod-
els trained with domain-specific corpora often outperform those
trained with general corpora [42]. To study and quantify the impor-
tance of the context of usage, we considered both general (Blogs)
and mobile apps specific corpora (Manuals and Google-play).

3.2 Word Embedding

Word embedding [60] is a class of unsupervised language modeling
and feature learning techniques that map words or sentences from
a corpus of documents to vectors of real numbers [85].

A word embedding assigns each unique word in the corpus to a
corresponding vector in the space. Word vectors are positioned in
the vector space such that words that share common contexts in
the corpus are close to one another. The resulting vector space is a
word embedding model, which test reuse approaches use to identify
semantically similar, although syntactically different words (the so-
called synonym problem). In the context of test reuse, the synonym
problem is a key issue, because we cannot expect that independent
developers use the same words to express the same concepts.

Our study considers the following word embedding techniques:

Leonardo Mariani, Ali Mohebbi, Mauro Pezzé, and Valerio Terragni

WORD2VEC [60]: one of the most popular word embedding tech-
niques developed in 2013 in Google. It implements a shallow (two-
layer) neural network that is trained to reconstruct linguistic con-
texts of words. Both ATM and CRAFTDROID rely on models built
with WorD2vEc [15, 45].

Global Vectors (GLOVE) [70]: a probabilistic technique that learns
vectors or words from their co-occurrence information (how fre-
quently they appear together in the corpus).

Word Mover’s distance (WM) [39]: a word embedding technique
based on the observation that semantic relationships are often pre-
served in vector operations on WoRrRD2VEC models. For instance,
vector(London) - vector(England) + vector(Germany) is close
to vector(Berlin). WM exploits this property by finding the min-
imum traveling distance between sentences [39]. As such, WM con-
siders distance between sentences (one or more words) [85] and not
only among pairs of words like the distances based on WoRD2VEC
or GLOVE [85]. In the context of test reuse this could be useful, be-
cause event descriptors often contain multiple words [15, 45]. WM
returns an integer greater than zero, that we normalize from 0 to
1, with a standard normalization 1/ (1+WM (txt*,xt)).

Fast Text (FasT) [18]: an extension of WorD2VEC developed in
Facebook. While WORD2VEC treats words as the smallest unit to
train on, FAST learns vectors for the n-grams that are found within
each word. FAST computes the vector of a word as the sum of
its n-grams. For example, the word “aquarium” has the n-grams:
“aqu/qua/uar/ari/riu/ium”. FAST is designed to alleviate the Out-of-
Vocabulary issue [18]. In fact, even if the word “aquarius” is not
present in the corpus, FasT would embed “aquarius” near to “aquar-
ium” because they share seven n-grams.

Bidirectional Encoder Representations from Transformers
(BERT) [24]: a context-sensitive word embedding technique that
infers the meaning of a word from its surroundings, by learning
how to predict 15% of masked words in a sentence.

Neural Network Language Model (NNLM) [8]: a family of neu-
ral network techniques that learn word embedding models jointly
with the language model. In our study we consider the NNLM tech-
nique proposed by Google [35].

Universal Sentence Encoder (USE) [19]: a state-of-the-art
context-sensitive word embedding technique proposed by Google.

3.3 Event Descriptor Extractor

This component collects the descriptors of the source event e® and
of the candidate target events <e(€, ei Ly e,tl,). An event descriptor
D is a set of textual attributes {ai,az - am} extracted from the
GUI states. Each attribute is defined as a (type, value) pair. Our
study considers all the attribute types used in current test reuse
approaches for ANDROID (ATM and CRAFTDROID) [15, 45] as part
of the descriptors. The attributes can be classified as primitive and
derived. Primitive attributes are directly associated with the widget
of the event under consideration. Derived attributes are obtained
from primitive attributes of other widgets in the GUI state that
contains the event under consideration.
The primitive attributes of a widget w are:

text, the visible label associated with w (xml attribute android: text).

Semantic Matching of GUI Events for Test Reuse: Are We There Yet?

Table 1: Groups of event descriptors

attribute attribute ATM Craftdroid intersection union
category type A C ANnC AUC
text v v v v
resource-id v v v v
primitive content-desc v v v v
hint v v v v
file-name v v
activity-name v v
neighbor-text 4 v
derived parent-text v v
sibling-text v v

content-description, a textual description of w that is not visible
in the GUL It is often used by ANDROID Accessibility APIs as alter-
nate text for describing the widget to visually impaired users (xml
attribute android:contentDescription).

hint, a textual description of w that is used in editable widgets to
help the user to fill the correct content (xml attribute android:hint).

resource-id, the unique identifier of w that developers assign to

each widget to reference them in the code (xml attribute android: id).

file-name, the name of the file associated with w. For example, the
name of the image file associated with a widget.

activity-name, the name of the ANDROID activity of the widget w.

Sometimes the textual information that describes a widget is
not found in the widget itself but in near widgets [11]. For instance,
the widget associated with ej in Figure 1 (A) does not have any
visible textual attribute, but there is a neighbor widget with text
attribute "First Name" that describes the semantic of the widget
of 5. ATM defines derived attributes from the spatial positions of
the widgets [15]. CRAFTDROID defines derived attributes from the
hierarchical structure of the ANDROID GUI states [45], in which
widgets have a parent-child-sibling relationship. The element that
directly precedes another element in the hierarchy is the parent of
the element below it, and the element below the parent is the child.
Two elements at the same hierarchical level are siblings.

The derived attributes of a widget w are:

parent-text, the text attribute of the parent widget of w.

sibling-text, the text attribute of the sibling widget immediately
before w in the hierarchical structure.

neighbor-text, the text attribute of the closest widget from w
within a certain distance.

Some attributes of a widget can be undefined (empty). For exam-
ple, most widgets lack the hint or content-desc attributes.

In our experiments we did not consider each attribute individu-
ally, as the semantic matching algorithms require a set of attributes
to be effective. Table 1 shows the four groups of attributes that we
considered in our study, where "A" and "C" indicate the attributes
used by ATM and CRAFTDROID, respectively. The "intersection”
group (A N C) are attributes used by both ATM and CRAFTDROID.
We consider this group to evaluate the impact of the attributes used
by only one approach. For example, we can evaluate the impact of
the descriptors neighbor-text and file-name, by comparing the re-
sults of the groups "A" and "A N C". The "union" group (A U C) are
attributes used by ATM, CRAFTDROID or both.

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Algorithm 1: Semantic Similarity Calculator

Input: two sentences txt® and txt’, a word embedding model M,
aggregrator aggr € {avg, sum}
Output: similarity score between txt® and txt’

1 function GETSIMSCORE
(txtS, txt!) < PREPROCESSING(txt?, txt?)
switch M do
case model at "word" level (WorD2VEC, GLOVE, FASTTEXT) do
score[][] « @
for each word wd; € txt® do
for each word wdy € txt* do
L Lscore[wdl][wdz] «— cosINESIM(M(wd1), M(wdy))

® w @ w e @ N

©

mappedScores «— GETMATCHEDWORDS(score[][])
10 return aggr{ mappedScores}

1 case model at "sentence" level (WMD, BERT, NNLM, USE) do
12 | return smu(M(txt°), M(txt')

3.4 Semantic Matching Algorithm

Test reuse approaches decide how to generate the target test case
by analyzing the lists of target events sorted according to the simi-
larity score computed for each event in the source test case. More
specifically, the algorithm takes in input the descriptor D* of the
source event e® and the set of descriptors {Dé,Di, e Dﬁl} of the
candidate target events E?, and returns a sorted list of Ef based on
the similarity scores computed between D* and each of the target
descriptors Df , where Df denotes the descriptor of event el.t.

We now describe the three semantic matching algorithms of our
study: the one used in ATM, the one used in CRAFTDROID, and
SEMFINDER, a new algorithm that we propose in this paper.

All the three algorithms rely on a word embedding model (M) to
compute the semantic similarity scores among the attribute values
of the source and target descriptors. Algorithm 1 illustrates the
function that the three algorithms share (Function GETSIMSCORE).
The function computes the similarity scores between two sentences
txt* and txt’ obtained from the values of the textual attributes of
the source and target descriptors, respectively. More specifically,
the function takes in input two sentences txt*, txt!, a model M, and
an aggregator function (average or sum), and returns a real number
that expresses the similarity score between txt* and txt!.

A pre-processing phase removes stop words, performs lemmati-
zation, and splits words in the case of camel case notation (line 2).
If the model M is at word level, the algorithm computes the cosine
similarity of vector (wd;) and vector (wdy) for all possible pairs
of words of the two sentences (wd; € txt’, wdy € txt') (lines 6-
8). Then it identifies the best match among the pairs as (i) the pair
with the highest cosine similarity, where (ii) every word is matched
only once (line 9). It finally returns the similarity score using the
aggregation function passed as an input (line 10). ATM uses sum as
an aggregation function, while CRAFTDROID and SEMFINDER use
average. If the model is at sentence level the algorithm does not
consider each word individually, but queries the model M with
the sentences as a whole. Notably, both ATM and CRAFTDROID use
models at word level, we add lines 10 and 12 to make the algorithm
compatible with the sentence level word embedding models that
we considered in our study.

We now describe the three algorithms and their key differences.

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Algorithm 2: Semantic Matching Algorithms

Input: source descriptor D%, set of target descriptors {Dé, Dlt, ---DLY
Output: sorting of E/ based on the semantic similarity with e$

13 function ATM

14 | descScores[] «— @

15 | label] < GETFIRSTDEF(D*®[neighbor-text], D*[resource-id] +

D#[file-name])

16 | label] « GETFIRSTDEF(D®[text], D*[content-desc], D*[hint])

17 | for eachifrom 1tondo

18 if type(e®) = type(e!) then

19 label{ — GETFIRSTDEF(D:f [neighbor-text], le [resourse-id] +
D*[file name])

20 label}, < GETFIRsTDEF(D] [text], D [content-desc] or D [hint])

21 scores «— @

22 for each label® € {label3, label; } do

23 for each label’ € {label{, labelg} do

24 L Ladd GETSIMSCORE(label®, label?, M, "sum") to scores

25 ;descScores[Dit] « max{ scores }

26 | return E’ sorted by descScore

27 function CRAFTDROID

28 | descScores[] «— @

29 | for eachifrom 1tondo

30 if type(e®) = type(e!) then

31 scores «— @

32 for each a; €{ textU hint, resource-id, content-desc, actitivty-name,
parent-text, sibiling-text} do

33 Ladd GETSIMSCORE(D®[a;], D;[ai], M, "avg") to scores

34 descScores[Df] «— avg{ scores }

35 | return E! sorted by descScore

36 function SEMFINDER

37 | descScores[] «— @

38 | for eachifrom 1tondo

39 if type(e®) = type(e!) then

10 (txtS, txt!) «— (@, @)

11 for each a; €{ text, resource-id, content-desc, hint, file-name,
neighbour-text] do

42 txt® « txt® U D% [q;]

43 tht’ «— txt! UD[a;]

m descScores[D?!] «— GETSIMSCORE(txt®, txt’, M, "avg")

45 | return E? sorted by descScore

Semantic Matching of ATM [15] Lines 13 to 26 of Algorithm 2
encode the semantic matching algorithm of ATM. The algorithm
starts by collecting two textual representations of the source event:
label] (line 15) and label (line 16). labels is the first defined at-
tribute among (neighbor-text, resource-id U file-name) in DS. If all
of such attributes are undefined, label{ is the empty string. Notably,
ATM extracts the neighbor-text attribute only for filling events, for
clicking events the attribute is always undefined. label; is the first
defined attribute among (text, content-desc, hint) in D* (line 16).
For each event ei[€ E? that has the same type of es (either
both filling or both clicking events), the algorithm collects labeli
and labelg in the same way it collects label] and label;, respec-
tively. Then, the algorithm invokes Function GETSIMSCORE (Al-
gorithm 1) for each combination of (label® € {label], label}}, la-
bel' € {label’, label}}), using "sum" as aggregation function. The
algorithm assigns the highest returned value to the score of the cur-
rent target event (score[Dit] line 25). After the algorithm analyses
each target event, it sorts E? based on the final scores (line 26).

Leonardo Mariani, Ali Mohebbi, Mauro Pezzé, and Valerio Terragni

Semantic Matching of CRAFTDRoOID [45] Lines 27 to 35 of Algo-
rithm 2 encode the semantic matching algorithm of CRAFTDROID.
For each target event eit of the same type of e* (either both filling
or both clicking events), CRAFTDROID gets the similarity scores of
their descriptor attributes (line 32) and adds them to List scores.
The algorithm only compares corresponding attributes. For exam-
ple, resource-id of the source descriptor is compared to resource-id
of the target descriptor. CRAFTDROID assigns the average of List
scores to the final score of the current target descriptor (line 34).

SEMFINDER Lines 36 to 45 of Algorithm 2 encode the semantic
matching algorithm SEMFINDER that we propose in this paper. For
each event e} € E' that has the same type of es (either both filling
or both clicking events), SEMFINDER builds two sentences txt* and
txt’. Tt builds txt® by concatenating all the values of the attributes of
D* (separated with a space), and txt’ with the values in Df . It then
removes words that are repeated in the same sentence. It finally
aggregates the similarity score between txtS and txt’ using aver-
age, and assigns the result to the final score of the current target
descriptor (line 44).

Key differences While sharing the same general idea, the three
algorithms differ in three important aspects':

L The attributes of source and target descriptors that they compare.
Both ATM and CRAFTDROID compute the semantic similarity only
between certain types of source and target attributes. CRAFTDROID
computes the semantic similarity only between attributes of the
same type. However, there is no guarantee that across different apps
the relevant semantic information is always contained in the same
attribute type. Indeed, a typical test reuse scenario involves source
and target apps implemented by different developers, who might
follow different software development styles and standards. ATM
allows some flexibility on the attribute types, for instance, it con-
siders the pair D [text] and D? [resource-id), but it is still restricted
to some combinations. For example, given a source event e with
D*[text] = "address", and target event el.t with Df [neighbor-text] =
"find" and Df [resource-id] = "location", both ATM and CRAFTDROID
would not consider the pair of attributes (D*[text], Dit [resource-
id]), thus missing the semantic similarity of "address" and "loca-
tion". ATM misses this pair of attributes because the first not empty
attribute at Line 20 of Algorithm 2 is D*[text], and thus will only
consider the pair (D*[text], Dit [neighbor-text]).

SEMFINDER computes the semantic similarity scores among all
attributes, regardless of their type. Our intuition is that the relevant
semantic information can be in any of the considered attribute
types. As such, SEMFINDER merges all source attribute values into
a single sentence, all target attribute values into another sentence,
and computes the semantic similarity of the two sentences.

II. The way they aggregate the similarity scores of multiple pairs
of attribute types. ATM uses the maximum (line 25 of Algorithm 2),
while CRAFTDROID uses the average (line 34 of Algorithm 2) to ag-
gregate the similarity score of multiple pairs of attribute types. Both
aggregation functions have their pros and cons [15, 45]. SEMFINDER
does not consider attributes separately, but it groups them into sen-
tences, thus does not need to combine the similarity scores of multi-
ple pairs of attribute types. By comparing sentences, SEMFINDER to

we exclude the difference of attribute types, which is considered individually by C3.

Semantic Matching of GUI Events for Test Reuse: Are We There Yet?

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Table 2: Subjects of our experiment

subject from category app id # of DL H subject from category app id # of DL
EasyBudget [17] 100k Minimal [78] -
Expenses [48] 1K Clear List [27] -
Expense Tracker 1) 1 Budget [40] 50K To-Do List Todo List [82] -
Open Money [89] 1K Simply Do [38] -
7 ~ Swiftnotes [2] - Shop. List [37] -
ATM Note Taking Writely Pro [71] - Shobpin. Rainbow [73] 0.5M
Pocket Note [77] - pping Yelp [90] 50M
Shop.List1 [5] - CRAFTDROID Mail.ru[50] 50M
. . Shop.List2 [86] 100K Mail Client myMail [67] 10M
Shopping List gp 1 Lists [51] 5K AnyMail [22] 10M
OI Shop. List [68] M TipCalculator
Lightning [6] 10K TipCalc [7] 500
Privacy [83] 1K Tip Calculator ~ Simple Tip [84] 1K
CraFTDROID - Browser FOSS [30] . TipCalcPlus [91] 500
FirefoxFocus [66] 5M FreeTipCalc. [36] 1K

leverage the full capacity of sentence level embedding techniques.
Sentence level techniques can handle semantic relation of words
when they appear together.

II1. The way they aggregate the similarity scores in case of word-
level word embedding models. ATM aggregates the similarity scores
of different words in the same sentence (Lines 4 to 10 of Algo-
rithm 1) with the sum (line 24 of Algorithm 2), while CRAFTDROID
with the average (line 33 of Algorithm 2). Even if SEMFINDER com-
bines all attribute types in single sentences, it also needs to ag-
gregate scores of words for word-level word embedding models
(Lines 4 to 10 of Algorithm 1). SEMFINDER aggregates the similarity
scores with the average (Line 44 of Algorithm 2), like CRAFTDROID,
since the average often works better than sum (used in ATM). This
is because the sum privileges (assign high score to) sentences with
many words, as there is always a positive score between two words,
if both words are represented in the model. Thus, two attributes
with many unrelated words usually get a higher score than two
attributes with fewer highly related (semantically similar) words.

4 EXPERIMENT

In this paper, we study the effectiveness and limitations of the se-
mantic matching of GUI events for test reuse approaches. We con-
ducted a set of experiments involving 253 different configurations
of the semantic matching (Figure 3), aiming to answer three re-
search questions:

RQ1 Baseline Comparison: Do semantic approaches based on
word embedding outperform syntactic and random approaches?

RQ2 Component Effectiveness: What are the most effective in-
stances of each component?

RQ3 Impact Analysis: Which component type(s) have the greatest
impact on the semantic matching of GUI events?

RQ1 checks whether the use of semantic approaches is justified,
by comparing the effectiveness of semantic approaches to both syn-
tactic (edit-distance and Jaccard similarity) and random approaches.
RQ2 identifies which instances achieve the best performance. RQ3
studies which component type has the largest impact on the effec-
tiveness of semantic matching, thus suggesting where the research
community should focus its effort.

4.1 Implementation

We implemented a fully automated tool in PyTHON that runs the dif-
ferent configurations of the four component types on a set of source
and target events. The tool represents a framework to evaluate the
semantic matching of GUI events, which can be easily extended to
add new component instances.

The source code of ATM and CRAFTDRoOID is publicly available,
ATM is written in JavaA [12], while CRAFTDROID in PYTHON [44].
We re-implemented the semantic matching algorithm of ATM in
PyTHON referring to the original Java implementation [12]. For the
algorithm of CRAFTDROID, we reused the original PyTHON code as
much as possible [44]. It is important to mention that the semantic
matching algorithms of ATM and CRAFTDROID are internal algo-
rithms of test reuse tools and can be hardly executed in isolation. As
such, one of the contributions of this work is a framework for com-
paring different component instances of the semantic matching,
similar to what FRUITER achieved in the context of test reuse [93].

We implemented the Event Descriptor Extractor instances with
atool that executes the source and target tests and extracts from the
GUI states the values of the nine widget attributes considered in our
study (Table 1). We used the framework Apprum (1.1.13) to read the
GUI states at runtime. We implemented our own extractor, rather
than rely on the implementations of ATM or CRAFTDROID, to have
a common tool to collect all the descriptors. Our event extractor
considers all types of click and fill events used by state-of-the-art
test reuse approaches (ATM and CRAFTDROID). In particular, click
events include simple click, swipe and long click, and are applicable
to a wide range of Android widget types such as Button, ListView,
Dialog, and ImageButton. Fill events insert a text into an EditText
widget.

4.2 Subjects

We considered all the publicly available test migration scenarios
(pairs of source and target test cases (t°,t')) used in the experi-
ments of ATM and CRAFTDROID. Such scenarios involve test cases
from 41 ANDROID apps. We considered all the test scenarios? that
belong to the 30 ANDROID apps that we could run. We could not

2 ATM considers 10 test scenarios for each pair of source and target apps. However,
such scenarios cannot be considered in isolation, because the scenarios are dependent
on one another. For this reason, we consider only the first scenario.

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Leonardo Mariani, Ali Mohebbi, Mauro Pezzé, and Valerio Terragni

Corpus of Documents (C1) Word Embedding Technique (C2) y

Word2vec, WMD, Glove, Fast

Manuals, Blogs, Google Play

Pre-trained (standard) Word Embedding Models
Word2vec, WMD, Glove, Fast, BERT, USE, NNLM

Syntactic Approaches
edit-distance based similarity (ES), Jaccard Similarity (JS)

Event Descriptor Extractor (C3)

ATM (A), CrarTDROID (C), X|3

Semantic Matching Algorithm (C4)

ATM, CrarTDROID,

SEMFINDER =253

ANCAUC

‘ 1 ‘ Random Baseline

Figure 3: The 253 configurations of components’ instances considered in our study

run five ANDROID apps of ATM because we encountered various
errors when compiling their source code. Despite a lot of effort, we
could not provide the correct environment for these subjects. We
could not run six ANDROID apps of CRAFTDROID because they re-
quire communication with a server, but the API or Security protocol
changed. Table 2 shows the 30 ANDROID apps that we considered
in our study.

We consider all 139 pairs of source and target test cases (t°, t')
among the test migration scenarios provided by ATM and CRAFT-
Droip that involve these 30 apps. The 139 scenarios include a
ground-truth annotation from the ATM and CRAFTDROID authors
that specifies which events in the source test case match which
events in the target test case. Given a source event e° € 5, we
use e;t € t! to denote the event that semantically matches e° as
annotated by the ground truth. Notably, not all events in source
test cases have an equivalent counterpart in the target app. Some
events (called ancillary events [93]) are specific to the source app
only, but are needed in the source test to reach certain app states
or windows. Since our goal is to evaluate the semantic matching
only, we removed them.

Because some source tests share the same app, the same event
could be repeated across multiple source tests. We remove redun-
dant events by considering two events e, and e, to be equivalent iff
all the nine event descriptors considered in our study are identical
across e, and ep,. After removing all redundant events, we obtained
337 unique source events, and thus 337 unique queries.

There are multiple ways to define the set of candidate target
events E' = {ef, e!,---e},} for each e° € t°. We define E* as the set
of events that are actionable in all the GUI states traversed by the
target test tf. More formally,Et = {e! : 3S € S, eis actionable in S},
where S is the sequence of state transitions obtained by executing t*.
Our definition of E? leads to semantic matching queries that are
coherent with test reuse, which match events across applications
considering target events that span multiple windows [15, 45]. Sim-
ply defining E? as the set of events actionable in the window of e;t
would create an artificial and unrealistic scenario. This is because
a test reuse technique cannot know in advance which window of
the target application should contain events semantically similar
to a given source event.

According to our definition, if multiple events in t! belong to
the same window, we can have many redundant events within the
same E?. We remove all of them by applying the equivalent relation
described above. The cardinality of resulting E? ranges from 5 to
80, with an average of 24.03 and median of 19 events.

4.3 Experimental Setup

Figure 3 shows the 253 configurations of the semantic matching
that we used in our experiment.

We considered the 12 pairwise combinations of the three corpora
of documents and four word embedding techniques: WorD2VEC,
WMD, GLovE and FasT, building 12 word embedding models. Be-
fore running the word embedding techniques we used the same
pre-processing steps used at Line 2 of Algorithm 1.

For all seven word embedding techniques we considered the pre-
trained (standard) models provided by the authors of such tech-
niques. Notably, these pre-trained models are obtained using dif-
ferent corpora of documents (such as, different versions of Google
News and Twitter datasets), which are not publicly available. As
such, we were not able to consider such corpora as individual com-
ponents, like we did for Manuals, Blogs, and Google-play.

We decided not to build models with BERT, USE and NNLM
using the three corpora (Manuals, Blogs, and Google-play), and
thus relying only on the pre-computed models. This is because
these word embedding techniques require a non-trivial parameter
tuning that goes beyond the scope of this paper.

RQ1 considers two canonical syntactic approaches that compute
the syntactic similarity of words/sentences: edit-distance based sim-
ilarity (ES), and the Jaccard Similarity index (JS). Because both ES
and JS do not use the corpus of documents, we ignore the combi-
nations of ES and JS with the three corpora.

ES computes the (normalized) similarity of two words relying
on the "Levenshtein distance" [41] that quantifies the dissimilar-
ity of two words as the minimum number of operations (deletion,
insertion and substitution) required to transform a word into the
other. Given two words wd; and wds,

max(|wdy|, |wdz2|) — LD(wd;, wdz)
max(|wdl, lwdz|)

ES(wdy, wds) = € [0;1]

where LD(wd; wdy) is the "Levenshtein distance" of wd; and wds.
ES returns 1 if the words are identical. ES operates at word level,
and thus replaces the query of the word embedding model at line
8 of Algorithm 1.

JS computes the similarity of two sets by dividing the number
of elements that are shared between both sets by the total number
of (unique) elements (both shared and not shared). In our context,
sets are sentences and the elements of the sets are words. Given
two sentences txt; and txty,
|txt; N txty| € [0:1]
|txty U txty|
JS returns 1 when txt; and txtz have all identical words, regardless
of their position in the sentences. JS operates at sentence level, and

JS(txty, txtg) =

Semantic Matching of GUI Events for Test Reuse: Are We There Yet?

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Component type

mm training_set mm word_embedding mm descriptors mm algorithm

2

: . i ?
s .
4 O@(& &

<
&

X ¥ £
& & & © &
& &S
§ &
0.65 Component type
: mm training_set mm word_embedding mm descriptors mm algorithm
0.60
= 0.55
S
S 0.50 - 3
0.45 " N
0.40
0.35
o o @
& & & & § & & &2
2 N S
<& OoQ &
o) &

Figure 4: Distribution of MRR (top)

thus replaces the interrogation of the word embedding model at
line 12 of Algorithm 1.

We experiment with the Event Descriptor Extractor instances
(Component 3) by combining the four groups of descriptors sum-
marized in Table 1 with all three Semantic Matching Algorithms
instances (Component 4). To distinguish the descriptors and algo-
rithms when they share the same name, we added the suffix "_d"
and "_a". For instance, ATM_d denotes the descriptor group and
ATM_a the algorithm of ATM.

An important design choice is how to modify the semantic match-
ing algorithms to accept a group of descriptors that differs from the
groups used by the original algorithms. We modify the semantic
matching algorithms as follows: If the group of descriptors does not
contain an attribute a that is considered in the original algorithm,
we remove a from the algorithm. For instance, when combining
the "intersection"” group to CRAFTDROID_a, we remove the activity-
name, parent-text and sibling-text from the set of attribute types
at Line 32 of Algorithm 2. If the group of descriptors contains an
attribute a that is not considered in the original algorithm, we add a
to the algorithm by appending it at the end of the text attribute. For
instance, when combining the CRaAFTDROID_d group with ATM_a,
we append the attribute types activity-name, parent-text and sibling-
text to the attribute text at Lines 16 and 20 of Algorithm 2. The ra-
tionale of using this approach is twofold: (i) ATM does not ignore
the new attributes, since ATM gives highest priority to the text,
and (ii) the choice corresponds to the way the original algorithm
of CRAFTDROID handles the hint attribute (line 32 of Algorithm 2).

Our last configuration is a random baseline that assigns a ran-
dom score between 0 and 1 to each pair of events. To cope with the
stochastic nature of the random baseline, we repeated this process
100 times and we report the median result.

4.4 Evaluation Metrics

In our study, a query q is a pair of a source event and a set of candi-
date target events (e*, E?) that returns the list of events in E sorted

and TOP1 (bottom) for each component

by their final score. In our context, we have only one correct answer
(e;t), and thus the rank of a query g;, denoted by rank;, is the posi-
tion of e/, in the list returned by the query g;. Following standard
practice, if multiple events have identical final scores, their rank is
the average of their positions. For instance, if the top three events
have identical final scores, their rank is equal to two (1+2+3/3 = 2).

We evaluate the semantic matching effectiveness of each of the
253 combinations using two metrics based on the ranks: (i) the
Mean Reciprocal Rank (MRR) [47], and (ii) the ratio of queries in
which the rank of the correct answer is one (TOP]I).

The reciprocal rank of a query response is the multiplicative
inverse of the rank of the first correct answer: 1 for first place, 1/2
for second place, 1/3 for third place and so on. The mean reciprocal
rank is the average of the reciprocal ranks of our 337 queries Q.

1 1Q] 1
MRR = — € (0;1
10| ; rank; ;1]

MRR is a standard statistical measure for evaluating any process
that produces a list of possible responses to a query g, sorted by
their probability of correctness. MRR is suitable in our context be-
cause it focuses on a single correct answer (e;t), while other metrics
like Mean Average Precision (MAP) and Normalized Discounted
Cumulative Gain (NDCG) focus on multiple correct answers [47].

The metric TOP1 is the ratio of queries in which the ground truth
(e;t) is at the first position of the returned list of events. TOP1 is
less informative than MRR, because it does not make any difference
whether a query returns the ground truth event at the second or last
position in the list. However, TOP1 remains an important metric to
evaluate the semantic matching of GUI events, as often test reuse
approaches choose the first event in the list.

19| .
1 1 ifrank; =1)
Top1= 101 ;{ 0 otherwise } € [0:1]

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Table 3: Distributions of the 253 combinations sorted by
MRR and TOP1 based on the percentiles 1%, 5%, 10%. [1:x]
denotes the configurations from position 1 to x of the list of
253 configurations ordered by MRR or TOP1.

. MRR TOP1
type instance [1:3] [1:13] [1:26] | [1:3] [1:13] [1:26]
blogs 0% 23% 12% 0% 15% 12%
C1 manuals 33% 15% 15% 0% 15% 12%
googleplay 33% 31% 23% | 33% 15% 19%
w2v 0% 0% 4% 0% 0% 0%
glove 0% 0% 0% 0% 0% 0%
wm 100% 92% 62% | 100% 69% 62%
fast 0% 0% 4% 0% 0% 4%
C2 bert 0% 0% 0% 0% 0% 0%
nnlm 0% 0% 12% 0% 15% 15%
use 0% 8% 19% 0% 15% 19%
is 0% 0% 0% | 0% 0% 0%
es 0% 0% 0% 0% 0% 0%
atm_d 100% 46% 42% 67% 46% 42%
C3 craftdroid_d 0% 15% 19% 0% 8% 19%
intersection 0% 8% 12% 0% 0% 15%
union 0% 31% 27% 33% 46% 23%
atm_a 0% 8% 15% 0% 0% 15%
C4 craftdroid_a 0% 0% 0% 0% 0% 0%
semfinder_a | 100% 92% 85% | 100% 100% 85%

4.5 Results

We run our 337 queries for each of the 253 configurations, we thus
execute 85,261 semantic matching queries in total. MRR ranges
from 0.201 to 0.789 across all configurations with an average of
0.696. The quartiles of MRR are: Q1: 0.674, Q2: 0.702, Q3: 0.724. In
the set of the 253 configurations sorted according to the MRR values,
the original configuration of ATM [manuals (Component 1), w2v
(Component 2), ATM_d (Component 3), ATM_a (Component 4)] is
in position 184 (MRR = 0.677), while the original configuration of
CrAFTDROID [standard (Component 1), w2v (Component 2), CRAFT-
Droip_d (Component 3), CRAFTDROID_a (Component 4)] is in po-
sition 196 (MRR = 0.670).

TOP1 ranges from 0.065 to 0.671 across all configurations (Q1:
0.484, Q2: 0.522, Q3: 0.558), with an average of 0.518. In the set of
the 253 configurations sorted according to the TOP1 values, the
original configuration of ATM is in position 200 (TOP1 = 0.472),
while the original configuration of CRAFTDROID is in position 191
(TOP1 = 0.484).

For both metrics the best configuration is [googleplay (Compo-
nent 1), WMD (Component 2), ATM_d (Component 3), SEMFINDER_-
a (Component 4)] and the worst is random.

Figure 4 shows the distributions of MRR and TOP1 by instance.
For example, the box plot of SEMFINDER_a on the top right of Fig-
ure 4 shows the distribution of the MRR values of all the 84 config-
urations with SEMFINDER_a as the semantic matching algorithm.
The box plots of the same Component type are sorted by median.

Note that some instances among the same component type be-
long to less configurations than others. For instance, WM is present
in 48 configurations, while USE only in 12. This is because for WM
we considered the pre-computed standard model and three models
built from the three corpora of documents, while for BERT we only
considered the pre-computed model.

Leonardo Mariani, Ali Mohebbi, Mauro Pezzé, and Valerio Terragni

Table 3 shows the distributions of the various component in-
stances for three percentiles 1% (top 3 entries), 5% (top 13 entries),
and 10% (top 26 entries). The values in the cells indicate the percent-
age of entries in the selected percentile (column) that uses a given
component (row). For instance, every entry in the first percentile
(1%) uses WM in both the lists sorted by the MRR and TOP1 metric.

We tested for statistical significance using a parametric two-sided
t-test [74]: if p-value <= 0.05 we reject the null hypothesis that the
two distributions are the same. We used a parametric test as the nor-
mality D’Agostino’s K test [69] confirmed that most distributions
are normally distributed.

4.6 RQ1: Baseline Comparison

Random has the worst performance, much worse than the other
configurations, and this confirms our expectation. When the 253
configurations are ordered by MRR values, the second last configu-
ration has value 0.595, while random 0.201. When they are sorted
by TOP1 values, the second last configuration has value 0.359, while
random 0.065.

The syntactic based similarity metrics (ES and JS) generally per-
form significantly worse than word embedding models (see Fig-
ure 4). Indeed, none of the 24 configurations with either JS or ES
appear in the top 10% configurations sorted by either MRR or TOP1
values (see Table 3).

This result confirms the hypothesis that often different develop-
ers use different words to express the same logical GUI action [15,
45]. This result motivates the use of word embedding models that
help identify semantically similar albeit syntactically different word-
s/sentences in widgets attributes.

4.7 RQ2: Component Effectiveness

Corpus of Documents (Component 1) Table 3 shows that the
googleplay corpus dominates the other two corpora for all per-
centiles (although the comparisons of the Component 1 distribu-
tions in Figure 4 are without statistical significance). Notably in
Table 3, the sum of the three percentages of blogs, manuals and
googleplay never reaches 100%. This is because the remaining con-
figurations involve multiple pre-computed models obtained with
different corpora of documents. In general the pre-computed mod-
els performed better, but we cannot draw generally valid conclu-
sions, because these models are obtained with different corpora of
documents.

Interestingly, the googleplay corpus suffers less from the Out Of
Vocabulary (OOV) issue than the other two corpora. OOV issues
occur when we ask the model to compute the similarity between
two words, out of which at least one does not belong to the corpus.
We considered all the 36 configurations that use WorD2VEC as word
embedding technique, and use blogs, manuals, or googleplay as
corpora of documents. We divided these 36 configurations into
three groups, according to the corpus of documents used. Then, we
counted the cumulative number of OOV issues for each group. OOV
issues are easy to identify, because WoRD2VEC returns 0.0 at Line 8
of Algorithm 1. The group of configurations that use googleplay
triggered 92,032 OOV issues, while the manuals and blogs corpora
279,370 and 163,036 issues, respectively.

Semantic Matching of GUI Events for Test Reuse: Are We There Yet?

I training_set word_embedding I descriptors B algorithm

0.07
0.10 1
0.06
0.05 0-08 1
[0.04 1 0.06
n
003 1 0.04
0024
0.02
0014 BN
0.00 0.00
MRR TOP1

Figure 5: impact analysis

Word Embedding (Component 2) WM and USE are the best word
embedding techniques according to both MRR and TOP1 (see Fig-
ure 4). The difference between WM and USE with FAsT, WORD2VEC,
GLovE, BERT, JS, ES is always statistically significant (for both MRR
and TOP1). Interestingly, WM dominates USE and all other tech-
niques according to the percentiles reported in Table 3. We observe
that sentence-level word embedding techniques perform statisti-
cally significant better than word-level ones. This result is sup-
ported by the observation that many GUI textual attributes have
multiple words.

Event Descriptor Extractor (Component 3) ATM_d and inter-
section perform much better than union and CRAFTDROID_d, among
the four groups of event descriptors (the difference is statistically
significant). We root the poor performance of union and CRAFT-
Droip_d in the activity-name attribute (which is defined for each
event). In fact, in our experiments many source and target events
shared the same default activity-name (main.activity), and this
affects the final scores. This is because if an unrelated event hap-
pens to have the same activity name of the source event, this event
might yield a similarity score higher than the correct match (e;t).

Semantic Matching Algorithm (Component 4) SEMFINDER_a
outperforms both ATM_a and CRAFTDROID_a (always with statisti-
cal significance). Indeed, the MRR and TOP1 medians of SEMFINDER
are higher than the median of both ATM_a and CRAFTDROID_a
(Figure 4). Moreover, in the 10% percentiles of both MRR and TOP1,
85% of the entries use SEMFINDER_a as the semantic matching algo-
rithm (Table 3). Each of the 84 configurations with SEMFINDER_a
completed all 337 queries in 255 seconds on average, the configura-
tions with CRAFTDROID_a in 393 seconds, and the configurations
with ATM in 600 seconds. This suggests that combining attribute
values into a single sentence reduces runtime while improving the
results of semantic matching.

4.8 RQ3: Impact Analysis

We identified the component type with the highest impact on the
semantic matching of GUI events with a so-called "local" sensitiv-
ity analysis [23], which varies the instance of one component type
at a time while holding the others fixed [33]. For each of the four
component types (Component 1, Component 2, Component 3 and
Component 4), we clustered the 253 configurations, so that only the
component under consideration varies, while the instances of the

ISSTA °21, July 11-17, 2021, Virtual, Denmark

other three components are fixed. For example, if we consider Com-
ponent 2 and exclude the random baseline, we have nine possible
instances. Every time we fix the values for components Compo-
nent 1, Component 3, Component 4, we define a new cluster with
nine configurations (in which only Component 2 varies). Then, we
compute the standard deviation (SD) of the MRR values of these
nine configurations. This SD value represents the impact of Com-
ponent 2 in the cluster (if the choice of Component 2 has high
impact, the SD value is high, otherwise it is low) [33]. We repeated
this process 28 times for every possible combination of the values
of Component 1, Component 3, and Component 4, obtaining 28 SDs
that globally capture the impact of Component 2 on the semantic
matching. We ran this analysis for all four component types.

We computed the SDs for both the MRR and the TOP1 values.
Figure 5 shows the distributions of the SDs values for category type.
Semantic Matching Algorithm (Component 4) is the configuration
with the highest impact for both MRR and TOP1 values, followed by
Event Descriptor Extractor (Component 3), Word Embedding Tech-
nique (Component 2), and Corpus of Documents (Component 1).
Researchers should consider this to prioritize their research effort
on the most relevant components.

4.9 Threats to Validity

External validity A possible threat to the external validity is that
our results may not generalize to other ANDROID apps and test cases.
We mitigated this threat by considering a large number of unique
queries (337). The number of test migration scenarios in our study
(139) is comparable with the scenarios used in the evaluation of test
reuse approaches [15, 45]. Moreover, we collected the subjects from
two benchmark datasets built by two independent teams, spanning
several app categories and functionalities (see Table 2).

Internal validity A possible threat to the internal validity is that
there might be errors in our framework that led to wrong results.
We mitigated this threat by manually validating the correctness of
the descriptors and metrics on a few queries. We manually scanned
337 queries and selected 30 queries with following characteristics:
having empty descriptors, abnormally high or low MRR and TOP1
values. For such queries, we manually inspect the GUI of the app to
check that the descriptors are correctly extracted. We also checked
if the embedding models return the computed similarity scores.
Moreover, we released our data and scripts and we welcome exter-
nal validation [53].

Construct validity A possible threat to the construct validity
is that we might not have faithfully re-implemented the semantic
matching algorithms of ATM and CRAFTDRoOID. We mitigated this
threat by referring to their original source code of the implementa-
tions provided by the authors of ATM and CRAFTDROID.

5 RELATED WORK

To the best of our knowledge, this paper is the first study on the se-
mantic matching of GUI events for test reuse approaches. Recently,
Zhao et al. propose the FRUITER framework [93] to comparatively
evaluate test reuse techniques. FRUITER compares test reuse tech-
niques as a whole, but does not support the evaluation and study of
semantic matching in isolation. FRUITER alone cannot tell whether
a test reuse technique works better than another because of a more

ISSTA °21, July 11-17, 2021, Virtual, Denmark

effective test generation or semantic matching of GUI events. In
principle, our framework could be combined with FRUITER, to eval-
uate and investigate different combinations of test generation and
semantic matching.

Techniques for reusing GUI tests are gaining popularity, as a
valid solution to generate semantically meaningful test cases [15,
45,75, 76]. In this study, we considered the test reuse approaches
for Android applications: ATM [13, 15, 16] and CRAFTDROID [45].
We did not consider GUITESTMIGRATOR [14], because ATM is an
extension of GUITESTMIGRATOR, which focuses on migrating GUI
test cases of apps with the same specification. We also excluded test
reuse approaches for Web apps [75, 76], and for adapting GUI tests
across the Android and iOS versions of the same app [72]. We also
excluded the GUI test reuse ApAPTDROID [55] that was published
after we conducted this study.

Some studies in the NLP community compared various word em-
bedding techniques [9, 42, 87]. Li et. al report that word embedding
techniques trained on domain specific corpora perform better on
the related specialized tasks [42]. Their conclusion is inline with
the results of this paper. Our study is the first one comparing word
embedding techniques in the context of GUI events matching.

6 CONCLUSIONS AND FUTURE WORK

This paper presents the first study on semantic matching of GUI
events for GUI test reuse/generation techniques. Our study involves
253 configurations of the semantic matching, 337 unique queries,
and 8,099 distinct GUI events. We now highlight some of our key
findings:

I. Sentence level word embedding techniques (WM, USE) per-
form generally much better than world level ones (WoORD2VEC,
GLOVE, and FasT). This is because many widget attributes are com-
posed of multiple words (sentences). In fact, in our experiments, the
widget attributes that we extracted are described with on average
2.39 words.

II. All component types impact on the effectiveness of the se-
mantic matching. However, the semantic matching algorithm is
the component type that impacts the most. Researchers should
focus their effort in designing new and better algorithms. More-
over, SEMFINDER, the new algorithm proposed in this paper outper-
forms both the one of ATM [15] and the one of CRAFTDROID [45].
SEMFINDER consolidates both ATM and CRAFTDROID algorithms
addressing some of their limitations. Differently from both ATM
and CRAFTDROID, SEMFINDER is specifically designed for sentence-
level word embedding models, which performs much better than
word-level word embedding models for the semantic matching of
GUI events.

ITI. When considering which widget attribute types should be
used in the semantic matching of GUI events, the more is not al-
ways the better. Our experiments show that some attributes (such
as, activity-name) can negatively affect the results. Also, the config-
urations that consider the largest number of attributes (union) are
not the ones providing the best results. More research is needed to
understand which widget attributes better describe the semantics of
widgets. This would be especially important for derived attributes,
as they could introduce meaningless and conflicting information.
In our study we did not investigate which derived attributes would

Leonardo Mariani, Ali Mohebbi, Mauro Pezzé, and Valerio Terragni

better describe a target widget, we followed the way both ATM
and CRAFTDROID select the derived attributes. Automatically rec-
ognizing and removing meaningless and conflict information is an
important future work.

IV. It might be preferable to train word embedding models with
a corpora of documents specific to the mobile app domain. In fact,
our proposed corpus of documents collected from the app descrip-
tions in Google Play is more effective than general purpose corpora
(although without statistical significance).

An important open research issue is related to the impact of
the semantic matching of GUI events on the overall effectiveness
of test reuse. This can be studied by combining our framework,
which compares the semantic matching step, with FRUITER [93],
which compares the whole test reuse activity (semantic matching +
test generation). It would also be interesting to study the semantic
matching of GUI events in other testing contexts that benefit from
semantic matching, like GUI pattern-based test generation [34, 46,
52, 54], and GUI test repair [29, 43, 57, 58, 62, 63, 92].

Current test reuse approaches define the semantic similarity re-
lations of GUI events as a one-to-one mapping between a source
and a target event. However, there could be cases of one-to-many
or many-to-one mappings, in which a source (or a target) event
matches multiple target (or source) events. Although, test reuse ap-
proaches may spontaneously create one-to-many or many-to-one
mapping during test generation because reaching a particular win-
dow or state requires the execution of auxiliary events [93]. Study-
ing one-to-many or many-to-one mappings of GUI events would
be an important future work.

Yet another promising research direction is the study of images
and graphical representations of widgets as semantic descriptors.
Indeed, images carry important semantic information about GUI
widgets [20, 34, 88]. One could rely on ML techniques to classify
images and graphical representations of widgets and convert them
into textual representations of widgets (to be used as additional
semantic descriptors). Also, one could leverage image analysis tech-
niques to identify those widgets across apps that have similar graph-
ical representations.

ACKNOWLEDGMENTS

This work is partially supported by the Swiss SNF project ASTERIx:
Automatic System TEsting of InteRactive software applications (SNF
200021_178742).

REFERENCES

[1] Ahmed Abbasi, Hsinchun Chen, and Arab Salem. 2008. Sentiment analysis in
multiple languages: Feature selection for opinion classification in web forums.
ACM Transactions on Information Systems (TOIS) 26, 3 (2008), 1-34.

Adrian Chifor. 2021. Swiftnotes. https://play.google.com/store/apps/details?id=

com.moonpi.swiftnotes. Last access: Jan 2021.

[3] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore
De Carmine, and Atif M. Memon. 2012. Using GUI Ripping for Automated Test-
ing of Android Applications. In Proceedings of the International Conference on
Automated Software Engineering (ASE ’12). ACM, 258-261.

[4] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Auto-
mated Concolic Testing of Smartphone Apps. In Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE °12). ACM,
59:1-59:11.

[5] Andrzej Grzyb. 2021. Shopping List. https://play.google.com/store/apps/details?

id=pl.com.andrzejgrzyb.shoppinglist. Last access: Jan 2021.

Anthony Restaino. 2021. Lightning Browser. https://play.google.com/store/apps/

details?id=acr.browser.lightning. Last access: Jan 2021.

[2

G

https://play.google.com/store/apps/details?id=com.moonpi.swiftnotes
https://play.google.com/store/apps/details?id=com.moonpi.swiftnotes
https://play.google.com/store/apps/details?id=pl.com.andrzejgrzyb.shoppinglist
https://play.google.com/store/apps/details?id=pl.com.andrzejgrzyb.shoppinglist
https://play.google.com/store/apps/details?id=acr.browser.lightning
https://play.google.com/store/apps/details?id=acr.browser.lightning

Semantic Matching of GUI Events for Test Reuse: Are We There Yet?

=

8

=

[9

=

[10]

(11

[12

(13

[14

[15]

[16

[17

[18

[19

[20]

[21]

[22

[23]

[24]

[25]

[26]

[27

[28]

[29

[30]

[31

[32]

Apps By Vir. 2021. Tip Calc. https://play.google.com/store/apps/details?id=com.
appsbyvir.tipcalculator. Last access: Jan 2021.

Ebru Arisoy, Tara N Sainath, Brian Kingsbury, and Bhuvana Ramabhadran. 2012.
Deep neural network language models. In Proceedings of the NAACL-HLT 2012
Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Lan-
guage Modeling for HLT. 20-28.

Marco Baroni, Georgiana Dinu, and German Kruszewski. 2014. Don’t count,
predict! a systematic comparison of context-counting vs. context-predicting se-
mantic vectors. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 238-247.

Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015.
The Oracle Problem in Software Testing: A Survey. IEEE Transactions on Software
Engineering 41, 5 (2015), 507-525.

Giovanni Becce, Leonardo Mariani, Oliviero Riganelli, and Mauro Santoro. 2012.
Extracting Widget Descriptions from GUIs. In Proceedings of the International
Conference on Fundamental Approaches to Software Engineering (FASE ’12).
Springer, 347-361.

Farnaz Behrang and Alessandro Orso. [n.d.]. ATM implementation. https://sites.
google.com/view/apptestmigrator.

Farnaz Behrang and Alessandro Orso. 2018. Poster: Automated Test Migration
for Mobile Apps. In Proceedings of the International Conference on Software Engi-
neering (ICSE Poster '18). ACM, 384-385.

Farnaz Behrang and Alessandro Orso. 2018. Test Migration for Efficient Large-
scale Assessment of Mobile App Coding Assignments. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis (ISSTA ’18). ACM, 164-175.
Farnaz Behrang and Alessandro Orso. 2019. Test migration between mobile
apps with similar functionality. In Proceedings of the International Conference on
Automated Software Engineering (ASE’19). IEEE Computer Society, 54-65.
Farnaz Behrang and Alessandro Orso. 2020. AppTestMigrator: a tool for auto-
mated test migration for Android apps. In Proceedings of the International Con-
ference on Software Engineering (ICSE DEMO ’20). ACM, 17-20.

Benoit Letondor. 2021. EasyBudget. https://play.google.com/store/apps/details?
id=com.benoitletondor.easybudgetapp. Last access: Jan 2021.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. En-
riching Word Vectors with Subword Information. arXiv preprint arXiv:1607.04606
(2016).

Daniel Cer, Yinfei Yang, Sheng yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St.
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-
Hsuan Sung, Brian Strope, and Ray Kurzweil. 2018. Universal Sentence Encoder.
arXiv:1803.11175 [cs.CL]

Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhut, Guo-
qiang Li, and Jinshui Wang. 2020. Unblind your apps: Predicting natural-language
labels for mobile GUI components by deep learning. In 2020 IEEE/ACM 42nd In-
ternational Conference on Software Engineering (ICSE). IEEE, 322-334.

Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated Test Input Generation for Android: Are We There Yet?. In Proceedings of
the International Conference on Automated Software Engineering (ASE ’16). IEEE
Computer Society, 429-440.

Craigpark Limited. 2021. Email App for Any Mail. https://play.google.com/store/
apps/details?id=park.outlook.sign.in.client. Last access: Jan 2021.

M]J Crick and MD Hill. 1987. The role of sensitivity analysis in assessing uncer-
tainty. In Uncertainty analysis for performance assessments of radioactive waste
disposal systems.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

Alan Dix. 2009. Human-computer interaction. In Encyclopedia of database sys-
tems. Springer, 1327-1331.

Zhen Dong, Marcel Béhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020.
Time-travel testing of Android apps. In ICSE '20: 42nd International Conference on
Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020 (ICSE’20). ACM,
481-492.

douzifly. 2021. Clear List. https://f-droid.org/en/packages/douzifly.list/. Last
access: Jan 2021.

Markus Ermuth and Michael Pradel. 2016. Monkey see, monkey do: Effective
generation of GUI tests with inferred macro events. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis (ISSTA ’16). ACM, 82-93.
Z. Gao, Z. Chen, Y. Zou, and A. M. Memon. 2016. SITAR: GUI Test Script Repair.
IEEE Transactions on Software Engineering 42, 2 (2016), 170-186.

Gaukler Faun. 2021. FOSS Browser. https://f-droid.org/en/packages/de.baumann.
browser/. Last access: Jan 2021.

Google. Accessed: 2017-08-12. Monkey Runner. http://developer.android.com/
tools/help/monkey.html.

Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI Testing of Android
Applications via Model Abstraction and Refinement. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE °19). IEEE Computer Society,
269-280.

[33

[34

[35

[36

@
=

[38

(39]

[40

[41

[42

T~
&

[44]

[45]

[46]

[50

[51]

[52]

o
&

[54

[55

[56]

[57]

(58]

[59

ISSTA °21, July 11-17, 2021, Virtual, Denmark

DM Hamby. 1995. A comparison of sensitivity analysis techniques. Health
physics 68, 2 (1995), 195-204.

Gang Hu, Linjie Zhu, and Junfeng Yang. 2018. AppFlow: Using Machine Learning
to Synthesize Robust, Reusable UI Tests. In Proceedings of the European Software
Engineering Conference held jointly with the ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (ESEC/FSE ’18). ACM, 269-282.
Tensor Flow Hub. [n.d.]. Token based text embedding trained on English Google
News 200B corpus. https://tfhub.dev/google/nnlm-en-dim128/2. Last access:
2020-09-30.

JPStudiosonline. 2021. Free Tip Calculator. https://play.google.com/store/apps/
details?id=com.jpstudiosonline.tipcalculator. Last access: Jan 2021.

keith kildare. 2021. Shopping List. https://f-droid.org/en/packages/com.woefe.
shoppinglist/. Last access: Jan 2021.

keith kildare. 2021. Simply Do. https://f-droid.org/en/packages/kdk.android.
simplydo/. Last access: Jan 2021.

Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kilian Q. Weinberger. 2015. From
Word Embeddings to Document Distances. In Proceedings of the International
Conference on International Conference on Machine Learning (ICML °15). 957-966.
Kvannli. 2021. Daily Budget. https://play.google.com/store/apps/details?id=com.
kvannli.simonkvannli.dailybudget. Last access: Jan 2021.

Vladimir I. Levenshtein. 1966. Binary codes capable of correcting deletions, inser-
tions, and reversals. Technical Report 8. Soviet Physics Doklady. 707-710 pages.
Hongmin Li, Xukun Li, Doina Caragea, and Cornelia Caragea. 2018. Comparison
of word embeddings and sentence encodings as generalized representations for
crisis tweet classification tasks. Proceedings of ISCRAM Asia Pacific (2018).

Xiao Li, Nana Chang, Yan Wang, Haohua Huang, Yu Pei, Linzhang Wang, and
Xuandong Li. 2017. ATOM: Automatic maintenance of GUI test scripts for evolv-
ing mobile applications. In Proceedings of the International Conference on Software
Testing, Verification and Validation (ICST ’17). IEEE Computer Society, 161-171.
Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek. [n.d.]. Craftdroid implemen-
tation. https://github.com/seal-hub/CraftDroid.

Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek. 2019. Test Transfer Across
Mobile Apps Through Semantic Mapping. In Proceedings of the International
Conference on Automated Software Engineering (ASE’34). IEEE Computer Society,
42-53.

Mario Linares-Vasquez, Martin White, Carlos Bernal-Cardenas, Kevin Moran,
and Denys Poshyvanyk. 2015. Mining android app usages for generating action-
able gui-based execution scenarios. In Proceedings of the Working Conference on
Mining Software Repositories (MSR ’15). IEEE Computer Society, 111-122.
Tie-Yan Liu. 2011. Learning to rank for information retrieval. (2011).

Luan Kevin Ferreira. 2021. Expenses. https://play.google.com/store/apps/details?
id=luankevinferreira.expenses. Last access: Jan 2021.

Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An in-
put generation system for android apps. In Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE ’13). ACM,
224-234.

Mail.Ru Group. 2021. Mail.ru. https://play.google.com/store/apps/details?id=ru.
mail.mailapp. Last access: Jan 2021.

Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: multi-objective automated
testing for Android applications. In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA °16). ACM, 94-105.

Ke Mao, Mark Harman, and Yue Jia. 2017. Crowd intelligence enhances auto-
mated mobile testing. In Proceedings of the International Conference on Automated
Software Engineering (ASE ’17). IEEE Computer Society, 16-26.

Leonardo Mariani, Ali Mohebbi, Mauro Pezzé, and Valerio Terragni. 2021. Se-
mantic Matching of GUI Events for Test Reuse: Are We There Yet? https://doi.org/
10.5281/zenodo.4725222

Leonardo Mariani, Mauro Pezz¢, and Daniele Zuddas. 2018. Augusto: Exploiting
Popular Functionalities for the Generation of Semantic GUI Tests with Oracles.
In Proceedings of the International Conference on Software Engineering (ICSE ’18).
280-290.

Leonardo Mariani, Mauro Pezze, Valerio Terragni, and Daniele Zuddas. 2021.
An Evolutionary Approach to Adapt Tests Across Mobile Apps. In International
Conference on Automation of Software Test (AST 21). 70-79. https://doi.org/10.
1109/AST52587.2021.00016

Atif Memon, Ishan Banerjee, and Adithya Nagarajan. 2003. What test oracle
should I use for effective GUI testing?. In Proceedings of the International Con-
ference on Automated Software Engineering (ASE °03). IEEE Computer Society,
164-173.

Atif Memon, Adithya Nagarajan, and Qing Xie. 2005. Automating regression
testing for evolving GUI software. Journal of Software Maintenance and Evolution:
Research and Practice 17, 1 (2005), 27-64.

Atif M Memon. 2008. Automatically repairing event sequence-based GUI test
suites for regression testing. ACM Transactions on Software Engineering and
Methodology 18, 2 (2008), 4.

Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan. 2003. GUI Ripping:
Reverse Engineering of Graphical User Interfaces for Testing. In Proceedings
of The Working Conference on Reverse Engineering (WCRE ’03). IEEE Computer

https://play.google.com/store/apps/details?id=com.appsbyvir.tipcalculator
https://play.google.com/store/apps/details?id=com.appsbyvir.tipcalculator
https://sites.google.com/view/apptestmigrator
https://sites.google.com/view/apptestmigrator
https://play.google.com/store/apps/details?id=com.benoitletondor.easybudgetapp
https://play.google.com/store/apps/details?id=com.benoitletondor.easybudgetapp
https://arxiv.org/abs/1803.11175
https://play.google.com/store/apps/details?id=park.outlook.sign.in.client
https://play.google.com/store/apps/details?id=park.outlook.sign.in.client
https://f-droid.org/en/packages/douzifly.list/
https://f-droid.org/en/packages/de.baumann.browser/
https://f-droid.org/en/packages/de.baumann.browser/
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
https://play.google.com/store/apps/details?id=com.jpstudiosonline.tipcalculator
https://play.google.com/store/apps/details?id=com.jpstudiosonline.tipcalculator
https://f-droid.org/en/packages/com.woefe.shoppinglist/
https://f-droid.org/en/packages/com.woefe.shoppinglist/
https://f-droid.org/en/packages/kdk.android.simplydo/
https://f-droid.org/en/packages/kdk.android.simplydo/
https://play.google.com/store/apps/details?id=com.kvannli.simonkvannli.dailybudget
https://play.google.com/store/apps/details?id=com.kvannli.simonkvannli.dailybudget
https://github.com/seal-hub/CraftDroid
https://play.google.com/store/apps/details?id=luankevinferreira.expenses
https://play.google.com/store/apps/details?id=luankevinferreira.expenses
https://play.google.com/store/apps/details?id=ru.mail.mailapp
https://play.google.com/store/apps/details?id=ru.mail.mailapp
https://doi.org/10.5281/zenodo.4725222
https://doi.org/10.5281/zenodo.4725222
https://doi.org/10.1109/AST52587.2021.00016
https://doi.org/10.1109/AST52587.2021.00016

ISSTA °21, July 11-17, 2021, Virtual, Denmark

[60]

[61

[62

[63]

[64]

[65]

[66

[67]
[68]

[69]

[70]

[75]

[76

Society, 260-269.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient esti-
mation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality.
In Proceedings of the International Conference on Neural Information Processing
Systems (NIPS ’13). 3111-3119.

M. Mirzaaghaei, Fabrizio Pastore, and Mauro Pezzé. 2010. Automatically Repair-
ing Test Cases for Evolving Method Declarations. In ICSM ‘10: Proceedings of 26th
IEEE International Conference on Software Maintenance.

Mehdi Mirzaaghaei, Fabrizio Pastore, and Mauro Pezzé. 2012. Supporting Test
Suite Evolution through Test Case Adaptation. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST ’12). IEEE Com-
puter Society, 231-240.

Nariman Mirzaei, Hamid Bagheri, Riyadh Mahmood, and Sam Malek. 2015. SIG-
Droid: Automated System Input Feneration for Android Applications. In Proceed-
ings of the International Symposium on Software Reliability Engineering (ISSRE ’15).
IEEE Computer Society, 461-471.

Kevin Moran, Mario Linares Vasquez, Carlos Bernal-Cardenas, Christopher Ven-
dome, and Denys Poshyvanyk. 2016. Automatically Discovering, Reporting and
Reproducing Android Application Crashes. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST ’16). IEEE Com-
puter Society, 33-44.

Mozilla. 2021. Firefox Focus. https://play.google.com/store/apps/details?id=org.
mozilla.focus. Last access: Jan 2021.

My.com BV. 2021. myMail. https://play.google.com/store/apps/details?id=ru.
mail.mailapp. Last access: Jan 2021.

Openlntents. 2021. OI Shopping list. https://play.google.com/store/apps/details?
id=org.openintents.shopping. Last access: Jan 2021.

Egon S Pearson, Ralph B D ”AGOSTINO, and Kimiko O Bowman. 1977. Tests
for departure from normality: Comparison of powers. Biometrika 64, 2 (1977),
231-246.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532-1543.

plafu. 2021. Writeily Pro. https://f-droid.org/en/packages/me.writeily. Last
access: Jan 2021.

Xue Qin, Hao Zhong, and Xiaoyin Wang. 2019. TestMig: Migrating GUI Test
Cases from iOS to Android. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA '19). ACM, 284-295.

rainbowshops. 2021. Rainbow. https://play.google.com/store/apps/details?id=
com.rainbowshops. Last access: Jan 2021.

Dieter Rasch and Volker Guiard. 2004. The robustness of parametric statistical
methods. Psychology Science 46 (2004), 175-208.

Andreas Rau, Jenny Hotzkow, and Andreas Zeller. 2018. Efficient GUI test gen-
eration by learning from tests of other apps. In Proceedings of the International
Conference on Software Engineering (ICSE Poster ’18). ACM, 370-371.

Andreas Rau, Jenny Hotzkow, and Andreas Zeller. 2018. Transferring tests across
web applications. In International Conference on Web Engineering. Springer, 50—
64.

(77

(78]

[79]

(80]

(82

[83

(84]

(85]

%o
2

(87

(88

[89

[90

[91

[92]

)
&

[94]

Leonardo Mariani, Ali Mohebbi, Mauro Pezzé, and Valerio Terragni

roxrook. 2021. Pocket Note. https://github.com/roxrook/pocket-note-android.
Last access: Jan 2021.

Ruben Roy. 2021. Minimal. https:/f-droid.org/en/packages/com.rubenroy.
minimaltodo/. Last access: Jan 2021.

Jonathan Schler, Moshe Koppel, Shlomo Argamon, and James W Pennebaker.
2006. Effects of age and gender on blogging.. In AAAI spring symposium: Com-
putational approaches to analyzing weblogs, Vol. 6. 199-205.

H Andrew Schwartz, Johannes C Eichstaedt, Margaret L Kern, Lukasz Dziurzyn-
ski, Stephanie M Ramones, Megha Agrawal, Achal Shah, Michal Kosinski, David
Stillwell, Martin EP Seligman, et al. 2013. Personality, gender, and age in the
language of social media: The open-vocabulary approach. PloS one 8, 9 (2013),
e73791.

SECUSO Research Group. 2021. Shopping List (Privacy Friendly).
https://play.google.com/store/apps/details?id=privacyfriendlyshoppinglist.
secuso.org.privacyfriendlyshoppinglist. Last access: Jan 2021.

SECUSO Research Group. 2021. Todo List. https://f-droid.org/en/packages/
douziflylist/. Last access: Jan 2021.

Stoutner. 2021. Privacy Browser. https://play.google.com/store/apps/details?id=
com.stoutner.privacybrowser.standard. Last access: Jan 2021.

TLe Apps. 2021. Simple Tip Calculator. https://play.google.com/store/apps/
details?id=com.tleapps.simpletipcalculator. Last access: Jan 2021.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010. Word representations: a
simple and general method for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for computational linguistics. Association
for Computational Linguistics, 384-394.

Vansuita. 2021. Shopping List. https://play.google.com/store/apps/details?id=br.

com.activity. Last access: Jan 2021.
Yanshan Wang, Sijia Liu, Naveed Afzal, Majid Rastegar-Mojarad, Liwei Wang,

Feichen Shen, Paul Kingsbury, and Hongfang Liu. 2018. A comparison of word
embeddings for the biomedical natural language processing. Journal of biomedi-
cal informatics 87 (2018), 12-20.

Xusheng Xiao, Xiaoyin Wang, Zhihao Cao, Hanlin Wang, and Peng Gao. 2019.
Iconintent: automatic identification of sensitive ui widgets based on icon clas-
sification for android apps. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 257-268.

xorum. 2021. Open Money Tracker. https://play.google.com/store/apps/details?
id=com.blogspot.e_kanivets.moneytracker. Last access: Jan 2021.

Yelp, Inc. 2021. Yelp. https://play.google.com/store/apps/details?id=com.yelp.
android. Last access: Jan 2021.

ZaidiSoft. 2021. Tip Calculator Plus. https://play.google.com/store/apps/details?
id=com.zaidisoft.teninone. Last access: Jan 2021.

Sai Zhang, Hao Lii, and Michael D Ernst. 2013. Automatically repairing bro-
ken workflows for evolving GUI applications. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA ’13). ACM, 45-55.

Yixue Zhao, Justin Chen, Adriana Sejfia, Marcelo Schmitt Laser, Jie Zhang, Fed-
erica Sarro, Mark Harman, and Nenad Medvidovic. 2020. FrUITeR: a framework
for evaluating Ul test reuse. In Proceedings of the Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 20). 1190-1201.

Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and William
G. J. Halfond. 2019. ReCDroid: Automatically Reproducing Android Applica-
tion Crashes from Bug Reports. In Proceedings of the International Conference on
Software Engineering (ICSE ’19). IEEE Computer Society, 128-139.

https://play.google.com/store/apps/details?id=org.mozilla.focus
https://play.google.com/store/apps/details?id=org.mozilla.focus
https://play.google.com/store/apps/details?id=ru.mail.mailapp
https://play.google.com/store/apps/details?id=ru.mail.mailapp
https://play.google.com/store/apps/details?id=org.openintents.shopping
https://play.google.com/store/apps/details?id=org.openintents.shopping
https://f-droid.org/en/packages/me.writeily
https://play.google.com/store/apps/details?id=com.rainbowshops
https://play.google.com/store/apps/details?id=com.rainbowshops
https://github.com/roxrook/pocket-note-android
https://f-droid.org/en/packages/com.rubenroy.minimaltodo/
https://f-droid.org/en/packages/com.rubenroy.minimaltodo/
https://play.google.com/store/apps/details?id=privacyfriendlyshoppinglist.secuso.org.privacyfriendlyshoppinglist
https://play.google.com/store/apps/details?id=privacyfriendlyshoppinglist.secuso.org.privacyfriendlyshoppinglist
https://f-droid.org/en/packages/douzifly.list/
https://f-droid.org/en/packages/douzifly.list/
https://play.google.com/store/apps/details?id=com.stoutner.privacybrowser.standard
https://play.google.com/store/apps/details?id=com.stoutner.privacybrowser.standard
https://play.google.com/store/apps/details?id=com.tleapps.simpletipcalculator
https://play.google.com/store/apps/details?id=com.tleapps.simpletipcalculator
https://play.google.com/store/apps/details?id=br.com.activity
https://play.google.com/store/apps/details?id=br.com.activity
https://play.google.com/store/apps/details?id=com.blogspot.e_kanivets.moneytracker
https://play.google.com/store/apps/details?id=com.blogspot.e_kanivets.moneytracker
https://play.google.com/store/apps/details?id=com.yelp.android
https://play.google.com/store/apps/details?id=com.yelp.android
https://play.google.com/store/apps/details?id=com.zaidisoft.teninone
https://play.google.com/store/apps/details?id=com.zaidisoft.teninone

	Abstract
	1 introduction
	2 Test Reuse Across Similar GUI Apps
	3 Semantic Matching of GUI events
	3.1 Corpus of Documents
	3.2 Word Embedding
	3.3 Event Descriptor Extractor
	3.4 Semantic Matching Algorithm

	4 Experiment
	4.1 Implementation
	4.2 Subjects
	4.3 Experimental Setup
	4.4 Evaluation Metrics
	4.5 Results
	4.6 RQ1: Baseline Comparison
	4.7 RQ2: Component Effectiveness
	4.8 RQ3: Impact Analysis
	4.9 Threats to Validity

	5 Related Work
	6 Conclusions and Future Work
	References

