Hybrid Mobile Apps in the Google Play Store:
An Exploratory Investigation

Ivano Malavolta*, Stefano Ruberto*
*Gran Sasso Science Institute, L’ Aquila, Italy -

, Tommaso Soruf, Valerio Terragni?

{ivano.malavolta,stefano.ruberto } @ gssi.infn.it

fUniversity of Leipzig, Leipzig, Germany - tsoru@informatik.uni-leipzig.de
iThe Hong Kong University of Science and Technology, Hong Kong, China - vterragni @cse.ust.hk

Abstract—One of the most intriguing challenges in mobile
apps development is its fragmentation with respect to mobile
platforms (e.g., Android, Apple iOS, Windows Phone). Large
companies like IBM and Adobe and a growing community of
developers advocate hybrid mobile apps development as a possible
solution to mobile platforms fragmentation. Hybrid mobile apps
are consistent across platforms and built on web standards. How
hybrid apps are performing in production settings is still highly
debated, with limited objective evidence.

In this paper, we present the first empirical investigation into
mobile hybrid apps involving a large number of mobile apps.
Our goal is exploratory and we aim at identifying, analysing,
and understanding the traits and distinctions of publicly available
hybrid mobile apps within their real-life context. The study has
been conducted by mining 11,917 free apps and their related
metadata from the Google Play Store, and analyzing them from
both a technical and end users’ perception perspective.

I. INTRODUCTION

The mobile apps market now counts more than two millions
apps, downloaded billions of times per year from a number
of dedicated app stores (with Google Play Store and Apple
App Store as clear market dominators [2]). However, code
written for one mobile platform (e.g., the Java code of an
Android app) cannot be used on another (e.g., the Objective-
C code of an Apple iOS app) [1], making the development and
maintenance of native apps for multiple platforms one of the
major technical challenges affecting the mobile development
community [8]. As a possible solution, large companies and
many developers are investing resources and effort on the so-
called hybrid mobile apps. Hybrid mobile apps are developed
by using standard web technologies (i.e., HTML, CSS, and
JavaScript) and all service requests to the Platform API are
mirrored by a cross-platform JavaScript API. In this context,
an hybrid development framework (e.g., Apache Cordova) can
be defined as a software component that allows developers to
create a cross-platform web-based mobile app by providing (i)
a native wrapper for containing the web-based code, and (ii)
a generic JavaScript API that bridges all the service requests
from the web-based code to the corresponding platform API.
Despite the obvious advantages of hybrid mobile apps, they
also suffer from a number of shortcomings such as restricted
access to hardware features, decrease in performance, etc.
Although limited in-the-lab studies [9], [6], [10], [3] give
some arguments to the strong debate pro and con, as of
today existing hybrid mobile apps have not been empirically
investigated yet.

As a step forward we present an empirical study about
the traits and distinctions of hybrid mobile apps from both
a developer’s and user’s perspectives. The purpose of this
work is exploratory: we aim at studying hybrid mobile apps in
their natural setting and letting the findings emerge from the
observations [12]. The study has been conducted by mining
and analysing the binaries of 11,917 free apps from the Google
Play Store. By mining apps directly from the Google Play
Store, this paper presents the first realistic investigation into
hybrid mobile apps through an empirical strategy.

The main findings of our study are: (i) further efforts are
needed to enhance hybrid mobile apps when dealing with
low-level, platform-specific features, (ii) developers of hybrid
mobile apps take heavily advantage of code reuse via both
desktop and mobile-specific web libraries, (iii) end users value
hybrid and native mobile apps similarly.

The rest of the paper is organized as follows. Section II
presents the experimental design of our study. Section III
discusses the results, whereas the threats to validity of our
study are discussed in Section IV. Section V discusses related
works and Section VI concludes the paper.

II. DESIGN OF THE STUDY

The research questions of this study are:

e RQ1 - Are hybrid mobile apps published in the Google
Play Store?

e RQ2 - What are the most used hybrid development
Jframeworks for developing hybrid mobile apps?

o RQ3 - What are the most used 3rd-party web libraries

for developing hybrid mobile apps?

¢« RQ4 - How are hybrid mobile apps integrated to the

Android platform and other installed apps?

o RQ5 - What is the difference in the user perceived value

between hybrid and native mobile apps?

The questions aim at identifying and characterizing hy-
brid development frameworks from a developer’s point of
view. RQ1 aims at assessing the use and spread of hybrid
development frameworks in the Google Play Store. RQ2 to
RQ4 have the form of classification questions and are related
to what are the most used hybrid development frameworks
among top-level mobile apps, how they build on 3rd-party
software components, and how they integrate with the Android
platform. Based on the reflection that consumers expect things
to just work, and rightfully so [5], RQ5 considers hybrid

development frameworks from the end users’ value perception
viewpoint.

The objects of our study are the 11,917 free Android apps
from one of the major markets, the Google Play Store. We
decided to analyse mobile apps in the Google Play Store
because of its large number of available apps having binaries
easy to reverse engineer. To identify a reference set of hybrid
development frameworks for mobile apps, we considered the
publicly available reference list!.

The dependent variables of our study are:
> type (RQI, nominal-binary): goal of this variable is to
identify whether the mobile app is hybrid or native.
> hybridFramework (RQ2, nominal): goal of this variable
is to identify which hybrid development framework has been
used for developing the mobile app.
> libraries (RQ3, nominal set): set of nominal variables,
each of them having a value within the set {YES,NO,
NOT_APPLICABLE?}. The aim of each of these variables
is to identify if a specific 3rd-party web library has been
used during the development of the hybrid mobile app. Since
we cannot know a priori all existing 3rd-party web libraries,
the libraries set will be defined in parallel with the data
extraction process, similarly to as data extraction is performed
in grounded theory approaches [11].
> permissions (RQ4, nominal-binary set): a set of nominal
binary variables, where each of them can have a value in
the {YES,NO} set. Similarly to 3rd-party web libraries,
the variables within the permissions set will be defined in
parallel with the data extraction process.
> rating (RQS5, ratio): this variable is estimated as the average
rating provided by the users of the mobile app as coming from
the 5-stars ratings in the Google Play Store.
> reviewsCount (RQS5, ratio): based on the fact that in
principles high-quality mobile apps tend to get more reviews
in its app lifecycle [4], this variable represents the number of
reviews of the mobile app provided by end users.

The data extraction process is composed of three main
steps (Figure 1).

1. Top-500 identification. We considered the top 500 most
popular free apps for each category of the Google Play Store,
as of November 23, 2014. By following the guidelines in [12,
§10.2], from the 27 categories we exclude the Widget and Live
Wallpaper categories because they are redundant as they are
aggregations of apps belonging to other categories. The result
of this step is a list of 12,500 app IDs.

2. APKs download. For each app identified in the previous
step we downloaded its corresponding APK file. In this step
we developed a Java tool for automatically downloading the
APK files. The tool is based on an open-source third-party
library? and on other publicly available third-party repositories
of APK files. When obtaining these data, we also downloaded
from the Google Play Store website the ratings and reviews
counts values of each app. At the time of writing, some of the

Thttp://en.wikipedia.org/wiki/Multiple_phone_web-based_application_
framework
Zhttp://code.google.com/p/android-market-api

n= 12,500 n= 12,468 n=11,917
2 3
Top-500 > APKs 3 APK data
identification download extraction

T T T
Top-500 apps list APK files App data

Fig. 1. Data extraction process.

12,500 apps identified in the previous step are not available
to download and we decided to exclude these apps from the
study, resulting in a reduced dataset of 12,468 apps.

3. APK data extraction. APK file of an Android app contains
its binary code, its static resources and its manifest file pro-
viding essential information of the app to the Android system.
We developed a Java-based tool for automatically extracting
relevant information from APK files. The tool is publicly
available on GitHub® and we are actively maintaining it. The
tool is able to automatically get all the needed information for
extracting the values of the type, hybridFramework, libraries,
and permissions, dependent variables More specifically, the
type and hybridFramework are extracted by checking a series
of assertions predicating on the resources within the APK file.
We defined those assertions by manually inspecting exam-
ples of apps we created with each hybrid framework. The
libraries variable is extracted by collecting the names of all
the JavaScript source files within the APK file, and stemming
them with respect to their extension and potential version
identifiers. The permissions variable is extracted from the
value of the android:name attribute of the < permission >
tag in the Android manifest of the app. During the analysis, we
noticed that 551 APK files have been encoded in a way that
reverse engineering them is not possible. Since these cases
represent only a small fraction of our dataset and they are
scattered through many categories, we could safely exclude
them from our study with low impact to its validity. To allow
easy replication and verification of our study, we provide to
interested researchers a complete replication package*.

III. RESULTS

Presence in the Google Play Store (RQ1). Overall, we have
identified 445 hybrid mobile apps in our dataset, counting
for a 3.73%. On one side, this result clearly shows that
hybrid mobile apps are significantly uncommon among the
top-500 apps within 25 Google Play categories. On the other
side, hybrid mobile apps are not completely neglected by top
Android developers, this result may be encouraging for the
future growth of hybrid development practice. We observe
that the categories containing the lower number of hybrid
mobile apps (Photography, Music & Audio, Tools, Game and
Personalization) are those that require a closer interaction
with the Android platform and hardware. For example, photo-
based apps for manipulating photos, music apps for playing

3http://github.com/GabMar/ApkCategoryChecker
“Replication package - http://cs.gssi.infn.it/hybrid_googleplay_analysis

songs from the device’s music library, tools for launching
background and system tasks, games for their performance
requirements, personalization apps for customizing the stan-
dard menus and features of the device. Because of their cross-
platform portability, hybrid development frameworks suffer
from the lack of these capabilities, often falling back to
platform-specific plugins and add-ons. This results is a clear
indicator of a future area of work for developers and vendors
of hybrid development frameworks.

Used hybrid development frameworks (RQ2). The most
used hybrid development frameworks are Apache Cordova
and Appcelerator Titanium counting to 258 and 116 apps,
respectively , whereas all the other frameworks are very less
used across all categories. This result is in line with informal
claims in other research papers [9], [10], [3], and it confirms
them empirically. The use of Apache Cordova is regularly
distributed across categories, whereas the use of Appcelerator
Titanium has a spike in the Finance category. By carefully
analysing the official documentation and support material of
these two frameworks, we conjecture that this result resides
in the difference about how they consider security. Indeed,
Appcelerator Titanium, differently from Apache Cordova, pro-
vides a set of security features that are required by mobile
app developers in the financial domain, like the support for
enterprise-level authentication and authorization.
Third-party web libraries for hybrid mobile apps (RQ3).
Table I shows the top twenty most used third-party libraries
in our dataset. In this context, the clear winners are: (i)
jQuery, a popular library for manipulating, querying, and
interacting with the Document Object Model (DOM), events
handling, animations, etc., (ii) jQuery Mobile, a front end
library providing a set of Ul components specific to mobile
apps (e.g., lists of elements, buttons, tab bars, title bars, search
fields, icons) and mobile-specific events such as page changes,
swipes, etc., and (iii) Json2, a browser-independent library
for encoding and decoding JSON objects (mainly used for
supporting JSON objects in older browsers).

Interestingly, 16 out of those 20 top used libraries are not
specific to mobile browsers, and actually have been initially
devised for targeting desktop browsers only. This is a clear
indicator of one of the most powerful advantages of developing
hybrid mobile apps from a developers’ point of view: the
possibility to reuse and build on any of the thousands of

TABLE I
MOST USED THRID-PARTY WEB LIBRARIES (TOP 20)
Web library # apps # Web library # apps
1 jQuery 267 11 | Underscore 29
2 jQuery Mobile 106 12 | Backbone 27
3 Json2 99 13 | Jasmine 27
4 Tonic 58 14 Lo-Dash 21
5 Angular]S 55 15 | RequirelS 21
6 Google Analytics | 38 16 | Bootstrap 20
7 Fastclick 35 17 | Mobiscroll 20
8 jQuery UL 32 18 | Crypto-js 16
9 Moment.js 32 19 | Datejs 15
10 | Facebook SDK 30 20 | Tween]S 14

JavaScript frameworks already existing in the desktop web
area today. We also notice that among the top-20 libraries
there are two MVC JavaScript frameworks, namely AngularJS
and Backbone. The purpose of an MVC framework is to
give a well-defined structure to a web application by building
it according to the Model-View-Controller design pattern.
An MVC framework is generally used when the logic of a
JavaScript web application gets larger and difficult to maintain.
This is exactly the case of hybrid mobile apps, in which the
logic running on the device is defined entirely in JavaScript.
Integration to the Android platform and other apps (RQ4).
It does not come as a surprise that permissions to access the
Internet and the network connection state are dominant here,
followed by the permissions to write to an external storage
drive (e.g., an SD card), or the ones to access the geographic
position of the user. Also, it does not come as a surprise that
17 out of the top 20 permissions are requested to the Android
platform, whereas the remaining 3 permissions are requested
to Google services. The three permissions requested to Google
services are to: (i) register and receive push messages via
the Google Cloud Messaging service, (ii) access web-based
services like Google Maps, and (iii) access the Google in-
app purchases services. By looking at the data, we notice that
permissions requested by hybrid mobile apps are generally in
line with those requested by native mobile apps.

Perceived value (RQS). The average of end user ratings for
both hybrid and native apps is 3.75 and 3.35, respectively.
This result does not come as a surprise because, as suggested
by Hu et al. [7], end users suffer from purchasing bias, i.e.,
they are more likely to view their acquired product more
positively since they committed the time (and money) to
purchase it. More interestingly, hybrid and native mobile apps
are performing equally with respect to end users’ star-rating
across all categories, with neglectable differences. For what
concerns app review counts, we notice that there is a relevant
difference between the number of reviews of native apps with
respect to hybrid mobile apps. Indeed, in our dataset, native
apps have been reviewed in average 6.5 times more than hybrid
mobile apps. By following the theory proposed by [7], saying
that end users who are reviewing a product are only doing
so when they are either incredibly satisfied or dissatisfied,
we can interpret this result as an indication of the fact that
hybrid mobile apps are neither perceived as too satisfying nor
dissatisfying. Together, the two variables we discussed above
let us conclude that, using a hybrid development framework
or developing an app natively is not a key discriminator with
respect to end users’ perception of the app.

IV. THREATS TO VALIDITY

Threats to external validity. We reduced this threat by
considering a large data set. Furthermore, a random selection
of all apps in the Google Play Store is likely to select
poor quality apps with a small number of downloads and
user reviews. By considering the most popular free apps per
category we increased the chance to include the apps with the

best (both current or expected) user base. Indeed, free apps
represent 75% of all Google Play Store apps.

Reliability validity threats concern the possibility of repli-
cating this study. We mitigated this possible threat by releasing
the replication package, which contains all the data extracted
from both the Google Play Store and the APK files.

Threats to conclusion validity concern the relation between
the treatment and the outcome. Google Play Store categories
have been considered as homogeneous entities during the
analysis, however this is not the case. For example, categories
like Libraries & Demo contain misc apps with many different
functionalities. Also, the other categories have an important
amount of heterogeneity. In this condition, generalizing con-
siderations to a whole category presents some risk and is not
completely appropriate. Further research is needed to find out
if the results apply to other app markets and mobile platforms.

V. RELATED WORK

Research studies analysing hybrid mobile apps are emerging
only recently. An observational study to provide a guide
to choose the right technology for implementing a mobile
app is presented in [9]. The resulting decision framework
takes into consideration five dimensions: user needs, device
features, development technologies, supported platforms, and
development approaches.

An experiment on evaluating the execution time and per-
formance overhead between a PhoneGap-based hybrid mobile
app with respect to an identical native application is reported
in [3]. The results of the benchmark show that in 7 out of
8 cases, the hybrid app implementation was slower than the
native one; however, the authors also noted that for general-
purpose business applications, this performance issue can be
considered as a slight one.

An in-the-lab study about hybrid mobile apps with respect
to developers’ needs (e.g., used programming language, de-
bugger, extensibility with native code, etc.) and user expec-
tations (mainly focussing on performance issues such as app
package size, required RAM, etc.) is presented in [10]. They
extracted data on a (non-exhaustive) set of hybrid development
frameworks from vendor documentation, and performed an
additional subjective analysis of the apps binaries.

Heitkotter et al. evaluated mobile web apps, hybrid apps,
and native apps with respect of a set of common criteria [6],
such as license and cost, supported platforms, application
speed, scalability, etc. The whole study is based on the
authors’ own research and experiences and on opinions from
experienced developers.

In summary, differently from past research, our paper
presents the first study for characterizing hybrid apps that
(1) has an empirical strategy, (ii) is based on a large dataset
comprising 11,917 apps and 3,041,315 user ratings, and (iii)
analyses hybrid apps in their actual context of use. Also, our
study is one of the first investigations into hybrid mobile apps
from both the developers’ and end users’ viewpoints.

VI. CONCLUSION AND FUTURE WORK

Inspired by recent trends in which hybrid apps have been
identified as one of the most effective mobile development
strategies, this paper satisfies the need for a detailed analysis
of existing hybrid apps in their actual context of use (i.e., the
Google Play Store). The results of our study show that there
is still room for working on hybrid development frameworks,
especially for supporting platform-specific features.Hopefully,
the above mentioned results will shed light on the current
traits and distinctions of hybrid apps today, thus impacting
future research, methods, and techniques for developing and
managing hybrid mobile apps.

As future work, we are planning to (i) perform a more
detailed study on the users’ perceptions about hybrid apps.
(i1) perform a cross-platform study that compare how a hybrid
mobile app perform differently on different platforms (iii)
design and conduct a survey targeting hybrid mobile app
developers with a focus on practitioners’ perceived strengths,
limitations and needs associated to existing hybrid develop-
ment frameworks. Based on the findings of the previous points,
we will design new solutions and techniques for enhancing
hybrid app development in close contact with vendors of
hybrid development frameworks, app store moderators, and
independent app developers.

ACKNOWLEDGEMENT

The authors would like to thank Gabriele Martini for the
development, maintenance, and support of the APK analyzer
at the basis of our study. This work is partially supported by
the Research Grants Council (GRF 611813) of Hong Kong.

REFERENCES

[1] IBM Corporation. Native, Web or Hybrid Mobile-app Development.
Document Number: WSW14182USEN, 2012.

[2] The U.S. Mobile App Report. comsCore Whitepaper, 2014.

[3] L. Corral, A. Sillitti, and G. Succi. Mobile Multiplatform Development:
An Experiment for Performance Analysis. Procedia Computer Science,
2012.

[4] D. Datta and S. Kajanan. Do App Launch Times Impact their Subsequent
Commercial Success? An Analytical Approach. In CloudCom-Asia,
2013.

[5] B. Fling. Mobile Design and Development: Practical Concepts and
Techniques for Creating Mobile Sites and Web Apps. OReilly Media
Inc., 2009.

[6] H. Heitkotter, S. Hanschke, and T. A. Majchrzak. Evaluating Cross-
Platform Development Approaches for Mobile Applications. In WEBIST,
2013.

[71 N.Hu,J. Zhang, and P. A. Pavlou. Overcoming the J-Shaped Distribution
of Product Reviews. Communications of the ACM, 2009.

[8] M. E. Joorabchi, A. Mesbah, and P. Kruchten. Real Challenges in Mobile
App Development. In ESEM, 2013.

[9] E. Masi, G. Cantone, M. Mastroni, G. Calavaro, and P. Subiaco. Mobile

Apps Development: A Framework for Technology Decision Making. In

MobiCASE, 2013.

J. Ohrt and V. Turau. Cross-Platform Development Tools for Smartphone

Applications. Computer, 2012.

A. Strauss and J. Corbin. Basics of Qualitative Research: Techniques

and Procedures for Developing Grounded Theory. SAGE Publications,

1998.

C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and A.

Wesslén. Experimentation in Software Engineering. Springer Science

& Business Media, 2012.

(10]

(11]

[12]

